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Abstract— In this paper we define the notion of an
overdetermined systems on a Lie group G and its asso-
ciated Lie algebra operator vessel. We define the transfer
functions of such systems which turn out to be the joint
characteristic functions of the associated vessel. We study
the properties of the transfer functions via restriction
to one-parameter subgroups of G. A formula connecting
the values of the transfer function with the characteristic
function of the infinitesimal generator of the group will be
given and an example will be provided for G the ax + b-
group.

I. INTRODUCTION

Commutative overdetermined systems and their trans-
fer function were studied in great detail in [2], [6] and
[9]. The non-commutative colligations and vessels were
partly treated in [6] and in a very general setting in
[5]. This paper is devoted to non-commutative overde-
termined linear systems in the setting of Lie groups and
Lie algebras. We work in the setting of Lie groups and
algebras since we want to preserve invariance under
group action, similarly to the commutative case. In
the second section we will define the notions of such
systems and their associated non-commutative opera-
tor vessels. Following [9] we develop a parallel non-
commutative frequency domain theory for our overde-
termined systems in the third section. We define the non-
commutative joint and complete characteristic functions
and the spaces on which they operate. The fourth section
will consider the notion of one-parameter subgroups of
the Lie group in question. We will show that restricting
our system to the one-parameter subgroup a one dimen-
sional operator colligation arises. In fact we show in a
theorem in that chapter that the joint transfer function
of our system is a direct integral of colligation transfer
functions. In the fifth chapter we will give a concrete
example of the ax+b group and show how that theorem
helps to compute the transfer function of a general non-
commutative overdetermined system on this Lie group.

II. LIE ALGEBRA OPERATOR VESSELS

This section will describe the Lie algebra vessels and
their associated systems of differential equations on the
Lie groups associated to the Lie algebra. We start with a
few definitions. First, for two Hilbert spaces H and E we
will denote by L(H, E) the space of all bounded linear
operators from H to E . For simplicity we will denote
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L(H,H) by L(H). Second, let g be a finite dimensional
Lie algebra over R. A (quasi hermitian) g-operator vessel
is a collection

V = (H, E , ρ,Φ, σ, γ, γ∗) . (1)

Here H and E are Hilbert spaces, Φ ∈ L(H, E), and
ρ : g → L(H), σ : g → L(E) and γ, γ∗ :

∧2
(g) → L(E)

are linear mappings such that the following hold:

• 1
i ρ is a representation of g, i.e., for all a, b ∈ g

1

i
[ρ(a), ρ(b)] = ρ([a, b]). (2)

• For all a ∈ g, σ(a)∗ = σ(a), and for all a, b ∈ g,

1

i
(γ(a ∧ b)− γ(a ∧ b)∗) =

=
1

i
(γ∗(a ∧ b)− γ∗(a ∧ b)∗) =

= σ([a, b]).

(3)

• The colligation condition: for all a ∈ g

1

i
(ρ(a)− ρ(a)∗) = Φ∗σ(a)Φ. (4)

• The input vessel condition: for all a, b ∈ g

σ(a)Φρ(b)∗ − σ(b)Φρ(a)∗ = γ(a ∧ b)Φ. (5)

• The output vessel condition: for all a, b ∈ g

σ(a)Φρ(b)− σ(b)Φρ(a) = γ∗(a ∧ b)Φ. (6)

• The linkage condition: for all a, b ∈ g

γ∗(a∧b)−γ(a∧b) = i (σ(a)ΦΦ∗σ(b)− σ(b)ΦΦ∗σ(a)) .
(7)

Alternatively, let e1, . . . , el be a basis of g and let cmkj
be the corresponding structure constants:

[ek, ej ] =
∑
m

cmkjem. (8)

Setting Ak = ρ(ek), σk = σ(ek), γkj = γ(ek ∧ ej), γ∗kj =
γ∗(ek ∧ ej), we obtain the various vessel conditions in



the basis dependent form:

1

i
[Ak, Aj ] =

∑
m

cmkjAm, (9)

1

i

(
γjk − γ∗jk

)
=

1

i

(
γ∗jk − γ∗∗jk

)
=
∑
m

cmjkσm, (10)

1

i
(Ak −A∗k) = Φ∗σkΦ, (11)

σkΦA∗j − σjΦA∗k = γkjΦ, (12)

σkΦAj − σjΦAk = γ∗kjΦ, (13)

γ∗kj − γkj = i (σkΦΦ∗σj − σjΦΦ∗σk) . (14)

A Lie algebra vessel is called strict if:
• ΦH = E
•
⋂
X∈g kerσ(X) = 0

A Lie algebra vessel (1) corresponds to a left invari-
ant conservative overdetermined linear system on a Lie
group G with Lie algebra (isomorphic to) g:

iXx+ ρ(X)x = Φ∗σ(X)u,

y = u− iΦx,
(15)

with energy conservation law

X〈x, x〉 = 〈σ(X)u, u〉 − 〈σ(X)y, y〉, (16)

and with compatibility conditions for the input and the
output signals:

σ(Y )Xu− σ(X)Y u+ iγ(X ∧ Y )u = 0, (17)

σ(Y )Xy − σ(X)Y y + iγ∗(X ∧ Y )y = 0. (18)

Here x : G → H is the state, u : G → E is the input,
and y : G → E is the output, and X and Y are left
invariant vector fields on G (identified with elements
of g). In terms of the corresponding basis X1, . . . , Xl for
left invariant vector fields, the system equations become:

iXk(x) +Akx = Φ∗σku, k = 1, . . . , l,

y = u− iΦx,
(19)

Xk〈x, x〉 = 〈σku, u〉 − 〈σky, y〉, k = 1, . . . , l, (20)

σkXju− σjXku+ iγjku = 0, j, k = 1, . . . , l, (21)

σkXjy − σjXky + iγ∗jky = 0, j, k = 1, . . . , l. (22)

III. FREQUENCY RESPONSE FUNCTIONS

Recall that frequency domain theory in [2], [6] and
[9] begins with looking at particular system trajectories:

u(t) = eiλtu0

x(t) = eiλtx0

y(t) = eiλty0

(23)

Here λ = (λ1, . . . , λl) and t = (t1, . . . , tl). Since in the
classical case we deal with commutative Lie groups, their
irreducible unitary representation are exactly πλ(t) =
eiλt. This leads us to consider the unitary dual Ĝ of G
as the basis for frequency domain theory in our case.
We consider a unitary irreducible representation π : G→

L(Hπ) and twist our system a bit. We look at L(Hπ,Hπ⊗
E)-valued and L(Hπ,Hπ⊗H)-valued system trajectories:

u(g) = (π(g)⊗ IE)u0

x(g) = (π(g)⊗ IH)x0

y(g) = (π(g)⊗ IE)y0

(24)

These functions are our generalized waves, where π is
the frequency and u0, x0 and y0 are amplitudes. For
u0,y0 ∈ L(Hπ,Hπ ⊗ E) and x0 ∈ L(Hπ,Hπ ⊗ H). We
twist the system equations appropriately:

iXx + [IHπ
⊗ ρ(X)]x = [IHπ

⊗ Φ∗σ(X)]u

y = u− i[IHπ
⊗ Φ]x

(25)

These are the system equations for operator valued
trajectories. We will plug the generalized waves into
them to obtain the frequency domain equations. In order
to be able to do this we need to compute the action of
the Lie algebra on the representation.

We proceed to define the action induced by π on the
Lie algebra g. We follow [8, Ch. 2] and identify g with
TeG. Every X ∈ g is associated to a one-parameter
subgroup of G, i.e., γX(t) = exp(tX) where t ∈ R.
Thus VX,π(t) = π(γX(t)) is a one parameter subgroup of
operators on Hπ. We define π(X) to be the infinitesimal
generator of VX,π. Furthermore by [8, Eq. 2.3] π(X)
is a representation of the Lie algebra g. The image of
this representation may contain unbounded operators
as well.

Now by [8, Eq. 28], for every u ∈ Hπ in the domain
of definition of π(X), π(g)u is a smooth function on G
and we have:

π(X)π(g)u = lim
h→0

π(exp(hX))π(g)u− π(g)u

h
=

= lim
h→0

π(exp(hX)g)u− π(g)u

h
=

= Xπ(g)u

(26)

The last equality follows from the definition of Xf(g),
for a smooth function f on G, [8, Eq. 2.32].

Next we consider the input/output compatibility con-
ditions (21) and (22) for the system equation and apply
them to our trajectories (24), we get:

(Λk ⊗ σj − Λj ⊗ σk + IHπ ⊗ γkj)u0 = 0 (27)

(Λk ⊗ σj − Λj ⊗ σk + IHπ ⊗ γ∗kj)y0 = 0 (28)

Here we have set Λp = 1
i π(Xp). Hence similarly to the

commutative case we are led to define the twin operator-
valued functions on Ĝ:

Ukj(π) = Λk ⊗ σj − Λj ⊗ σk + IHπ
⊗ γkj

Vkj(π) = Λk ⊗ σj − Λj ⊗ σk + IHπ
⊗ γ∗kj

(29)



In the basis-independent form we get the following two
compatibility operators:

U(π,X, Y ) = π(X)⊗ σ(Y )− π(Y )⊗ σ(X)+

+ iIHπ
⊗ γ(X ∧ Y )

V (π,X, Y ) = π(X)⊗ σ(Y )− π(Y )⊗ σ(X)+

+ iIHπ
⊗ γ∗(X ∧ Y )

(30)

Therefore one is led to define the following spaces:

E(π) = {u ∈ L(Hπ,Hπ ⊗ E)|Ukj(π)u = 0,∀j, k} (31)

E∗(π) = {y ∈ L(Hπ,Hπ ⊗ E)|Vkj(π)y = 0,∀j, k} (32)

In the basis independent form one has the following
equivalent definitions:

E(π) = {u ∈ L(Hπ,Hπ ⊗ E)|U(π,X, Y )u = 0} (33)

E∗(π) = {y ∈ L(Hπ,Hπ ⊗ E)|V (π,X, Y )y = 0} (34)

Now we plug (24) into the first equation in (25) and
obtain:

(iπ(X)⊗ IH + IHπ ⊗ ρ(X))x0 = (IHπ ⊗ Φ∗σ(X))u0

(35)
Assume that we can choose X ∈ g such that iπ(X) ⊗
IH + IHπ

⊗ ρ(X) is invertible. Then we have a solution
to the above equation in the following form:

x0 = (iπ(X)⊗ IH + IHπ
⊗ ρ(X))

−1
(IHπ

⊗ Φ∗σ(X))u0

(36)
Plugging (24) and then the above result into the second
equation of (25) we get:

y0 = (IHπ ⊗ IE−
− i (IHπ

⊗ Φ) (iπ(X)⊗ IH + IHπ
⊗ ρ(X))

−1×
× (IHπ

⊗ Φ∗σ(X)))u0

(37)

This computation leads us to define the joint transfer
function (frequency response function) of the vessel:

S(π) = (IHπ
⊗ IE−

− i (IHπ ⊗ Φ) (iπ(X)⊗ IH + IHπ ⊗ ρ(X))
−1×

× (IHπ ⊗ Φ∗σ(X)))|E(π)

(38)

The domain of S is a subset of Ĝ (where the resolvent
exists), its values are operators from E(π). For many
cases of Lie algebras S in the definition above is in-
dependent of the choice of X. In other words S(π)
acts on operators from Hπ to Hπ ⊗ E , namely u via
composition to obtain y. Furthermore by the definition
above the range of S(π) in fact lies in E(π). Since
the input functions must satisfy the input-compatibility
conditions, to be eligible for our computations. Recalling
the commutative case, one would expect that the range
of S(π) will lie in the ”‘output bundle”’, E∗(π) and in
fact it is so in our case. There exist an analog of the
commutative intertwining relation in our case.

If we use the basis notation, we can write down an
expression for S in the basis dependent form:

S(π) = (IHπ
⊗ IE + i (IHπ

⊗ Φ)×

×

(
l∑

p=1

(αpΛp ⊗ IH − αpIHπ
⊗Ap)

)−1
×

× (IHπ
⊗ Φ∗)

(
l∑

q=1

αqIHπ
⊗ σq

)
)|E(π)

(39)

We now define the complete characteristic function of
the vessel:

W (X, z) = IE − iΦ (izIH + ρ(X))
−1

Φ∗σ(X) (40)

Therefore S(π) = W (X,π(X))|E(π).
The complete characteristic function takes values in

L(E). Hence W (X,π(X)) takes values in L(Hπ ⊗ E).
It acts on elements of L(Hπ,Hπ ⊗ E) via composition.
So the restriction above is to be understood as the
restriction of this action.

In the basis-dependent representation, the complete
characteristic function takes the following form:

W (α1, . . . , αl, z) = IE+

+ iΦ

(
zIH −

l∑
p=1

αpAp

)−1
Φ∗(

l∑
q=1

×

× αqσq)
(41)

Hence we obtain that:

S(π) = W (α1, . . . , αl, α1Λ1 + . . . αlΛl)|E(π) (42)

The restriction is to be understood as above.

IV. ONE-PARAMETER SUBGROUPS

Now we come to consider one parameter subgroups
of our group G, which we assume is solvable. A one
parameter subgroup is by definition a Lie group homo-
morphism φ : R→ G. We will restrict our system to those
subgroups. To do this we consider all of our functions
restricted to the image φ(R) with the Lie algebra dφ(R).
Since the Lie algebra is generated by a single element
d
dt Hence we obtain that the image is generated by an
element of the form dφ( ddt ). We denote this element by
Xφ. In fact the one parameter subgroup is given via:

φ(t) = exp(tXφ) (43)

Where exp : g → G is the canonical exponential map.
Restricting ρ and σ to this Lie algebra we denote Aφ =
ρ(Xφ) and σφ = σ(Xφ). Since the algebra is one dimen-
sional the restriction of γ and γ∗ are in fact the zero
functions. Therefore we obtain that the vessel conditions
collapse into the following condition:

1

i
(Aφ −A∗φ) = Φ∗σφΦ (44)



This condition is exactly the condition [9, 1-1] of a
regular one dimensional operator vessel. Now for the
system equations, plugging in the above definitions we
obtain that the restricted system equations are:

iXφx ◦ φ(t) +Aφx ◦ φ(t) = Φ∗σφu ◦ φ(t)

y ◦ φ(t) = u ◦ φ(t)− iΦx ◦ φ(t)
(45)

This system is exactly the restriction of our system to the
one-parameter subgroup. In fact we can consider this
system of equations as the usual operator colligation on
R, see for example [9, 1-6,7].

Having obtained this system, we look at it’s character-
istic function. The vessels characteristic function is given
by ( [9, 2-1]):

S(λ) = IE − iΦ(Aφ − λIH)−1Φ∗σφ (46)

On the other hand we can consider the restriction of
any Lie group representation of G to our one parameter
subgroup. In general such a restriction will be highly
reducible since the subgroup is abelian, and therefore by
Schur’s lemma admits only one-dimensional irreducible
representations. Now by [4, Thm. 7.36] π ◦ φ admits a
decomposition as a direct integral of irreducible repre-
sentations of R:

π ◦ φ =

∫ ⊕
R
πλdν(λ) (47)

Here each πλ is a multiplicative functional on R and
the measure ν is a scalar measure corresponding to the
direct integral decomposition. We now compute πλ(Xφ).
We can write πλ(h) = eiλφ

−1(h). Hence if we differentiate
πλ then we will obtain:

dπλ = iλdφ−1 (48)

Hence πλ(Xφ)s = dπλ(Xφ)s = iλs for an arbitrary s ∈
R.

Now since the formula of S(π) is independent of the
choice X ∈ g, we can write down:

S(π) = IHπ ⊗ IE−
− i(IHπ ⊗ Φ)(iπ(Xφ ⊗ IH + IHπ ⊗Aφ)−1)×
× (IHπ ⊗ Φ∗σφ)

(49)

We plug in the result (47) and the formula for dπλ(Xφ)
and use [3, Prop. II.2.3] and [3, Prop. II.2.8] to obtain:

S(π) =

∫ ⊕
R
IE ⊗ Iλdν(λ)−

− i(
∫ ⊕
R

Φ⊗ Iλdν(λ))(

∫ ⊕
R
Aφ ⊗ Iλdν(λ))−1×

× (

∫ ⊕
R

Φ∗σφ ⊗ Iλdν(λ)−
∫ ⊕
R
λIH ⊗ Iλdν(λ)) =

=

∫ ⊕
R

(IE − iΦ(Aφ − λIH)−1Φ∗σφ)⊗ Iλdν(λ) =

=

∫ ⊕
R
S(λ)⊗ Iλdν(λ)

(50)

In fact we have proved that:
Theorem 4.1: For every one parameter subgroup of G

we have that:

S(π) =

(∫ ⊕
R
S(λ)⊗ Iλdν(λ)

)
|E(π) (51)

or in other words:

S(π) =

(∫ ∞
−∞

dE(λ)⊗ S(λ)

)
|E(π) (52)

Where dEλ is a Hπ-projection valued measure.
Proof: The first equation was proved in the discus-

sion above. Now we prove the second form. Note that in
fact π(exp(tXφ)) is a strongly continuous one-parameter
group of unitary operators, by Stone’s theorem (see for
example [1, Eq. 73.1]) we have that, there exists an
Hπ-projection valued measure on R such that:

π(exp(tXφ)) =

∫ ∞
−∞

eiλtdEλ (53)

Now furthermore by Stone’s theorem there exists an
infinitesimal self-adjoint generator A for this group. In
other words:

π(exp(tXφ)) = eitA (54)

Now by [10, Rem. 3.36] we have that:

π(Xφ) =
d

dt
|t=0(π(exp(tXφ))) =

d

dt
|t=0

∫ ∞
−∞

eiλtdEλ =

=

∫ ∞
−∞

iλdEλ

(55)

Now we plug it into the equation for S(π) to obtain the
desired result.
This proposition in fact gives a representation of the
joint transfer function of a vessel in terms of the ”di-
agonalization”’ of the operator π(X) for a fixed X ∈ g.

V. ax+ b-GROUP EXAMPLE

The ax+b group is one of the simplest Lie groups. It is
the lowest dimensional non-commutative Lie group. The
ax+ b group is the group of affine direction preserving
transformations of the real line R, i.e., the transforma-
tions:

(a, b) : R→ Rx 7→ ax+ b, a > 0 (56)

We denote the ax+ b group by G.
The unitary dual of the ax + b group consists of a

family of one-dimensional representation:

π0
t (a, b) = ait, t ∈ R (57)

and two infinite dimensional representations on H+ =
L2(R+) and H− = L2(R−)

π+(a, b)f(t) =
√
ae2πibtf(at), f(t) ∈ L2(R+, dt/t) (58)

π−(a, b)f(t) =
√
ae2πibtf(at), f(t) ∈ L2(R−, dt/|t|)

(59)



The exact construction of the unitary dual can be found
in Example 1 of [4, Sec. 6.7]. The same example states
that in fact the Plancherel measure of the family of one-
dimensional representation is 0. Hence the Plancherel
measure on the unitary dual is in fact a counting mea-
sure on the two element set {π+, π−}.

We will restrict our attention to system-
trajectories of the form (π+(a, b) ⊗ IE)u0, where
u0 ∈ TC(L2(R+), L2(R+) ⊗ E). We can consider such
a trajectory as an operator-valued function on G
that for each (a, b) ∈ G gives us an operator from
L2(R+) to L2(R+) ⊗ E . Since we are considering only
trace-class operators, we recall that to every trace-class
operator T on L2(R+), there exists a kernel function
K ∈ L2(R+ × R+) such that:

[Tf ](t) =

∫ ∞
0

K(t, s)f(s)
ds

s
(60)

See for example [4, Thm. 7.16] or [7, Thm. IV.23]. We
can thus identify u with an integral operator on L2(R+)
with an E-valued kernel. in other words:

uf(t) =

∫ ∞
0

Ku(t, s)f(s)
ds

s
(61)

Here Ku(t, s) ∈ L2(R+ × R+, E). Now we compute the
action of the Lie algebra of G on π+. We recall that
X1 = a ∂

∂a and X2 = a ∂
∂b are the basis for the Lie algebra

of our group.
Using the above representation we compute that the

input and output compatibility conditions translate to
compatibility conditions for the kernels Ku at the input
and Ky at the output:

1

2
σ2Ku(t, s) + tσ2

∂

∂t
Ku(t, s)−

− 2πitσ1Ku(t, s) + iγKu(t, s) = 0
(62)

1

2
σ2Ky(t, s) + tσ2

∂

∂t
Ky(t, s)−

− 2πitσ1Ky(t, s) + iγ∗Ky(t, s) = 0
(63)

Similarly the system equations translate to equations
for the kernels of the respective operators:

i

2
Kx(t, s) + it

∂

∂t
Kx(t, s) +A1Kx(t, s) = Φ∗σ1Ku(t, s)

(64)

A2Kx(t, s)− 2πtKx(t, s) = Φ∗σ2Ku(t, s) (65)

Ky(t, s) = Ku(t, s)− iΦKx(t, s) (66)

The above equations are true for every s ∈ R+. Now
we restrict our attention to the one parameter subgroup
given by H = {exp(rX2)|r ∈ R}. We consider the family
of unitary operators π(exp(tX1)). Since π+ and π− are

both sub representations of π (a representation of G on
L2(R \ {0}, dt/|t|)).

π(exp(rX2))g(s) = e2πirsg(s) (67)

This operator admits a fairly simple spectral analysis:

π(exp(rX2)) =

∫ ∞
−∞

eirλdEλ (68)

Here E is an L2(R)-projection valued measure. Hence
in particular:

π(X2) =

∫ ∞
−∞

iλdEλ (69)

Finally we obtain that:

S(π) =

∫ ∞
−∞

(IE − iΦ(A2 − λIH)−1Φ∗σ2)⊗ dEλ (70)

Now we note that in fact if we recall that 1
i

∫∞
−∞ λdEλ,

we can use some spectral functional calculus to obtain
that:

S(π)Ku(t, s) =
(
IE − iΦ(A2 − 2πtIH)−1Φ∗σ2

)
Ku(t, s)

(71)
This follows from the fact that π(X2)g(t) = 2πtg(t). The
kernel Ky is obtained by applying the right hand side
to Ku.

VI. CONCLUSIONS AND FUTURE WORKS

In this short paper we have re-introduced the notion
of non-commutative overdetermined system. We have
shown that in fact the transfer function of such systems
can be reconstructed from one-dimensional data, by
restricting the system to a one-parameter subgroup.
This technique can be employed to study systems not
only on the ax + b-group, as in the example, but for
groups interesting for physics, such as the Heisenberg
groups. On the other hand fully developing the theory
of Lie algebra operator vessels is an interesting topic of
research in the purely mathematical context of operator
theory.

VII. ACKNOWLEDGMENTS

I thank Prof. Vinnikov for patiently guiding me during
the course of writing my master thesis and this paper,
his remarks were invaluable to me.

REFERENCES

[1] N. I. Ahiezer and I. M. Glazman. Teoriya linĕınyh operatorov
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