EXERCISES ON FOURIER SERIES

Problem 1. Let $\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ be the Fourier series of $f(x)$. Find the Fourier series of the following functions:
(1) $g(x)=f(x+\alpha)$;
(2) $h(x)=e^{i m x} f(x)$ (m an integer).

Problem 2. Let $\sum_{n=-\infty}^{\infty}\left|\alpha_{n}\right|<\infty, \sum_{n=-\infty}^{\infty}\left|\beta_{n}\right|<\infty$, and let $f(x)=\sum_{n=-\infty}^{\infty} \alpha_{n} e^{i n x}$, $g(x)=\sum_{n=-\infty}^{\infty} \beta_{n} e^{i n x}$.
(1) Show that the series $\sum_{n=-\infty}^{\infty} \alpha_{m-n} \beta_{n}$ converges for every integer m, and that

$$
\sum_{n=-\infty}^{\infty}\left|\gamma_{n}\right| \leq \sum_{n=-\infty}^{\infty}\left|\alpha_{n}\right| \cdot \sum_{n=-\infty}^{\infty}\left|\beta_{n}\right|
$$

where $\gamma_{m}=\sum_{n=-\infty}^{\infty} \alpha_{m-n} \beta_{n}$.
(2) Let $h(x)=\sum_{n=-\infty}^{\infty} \gamma_{n} e^{i n x}$. Show that $h(x)=f(x) g(x)$. Show also that

$$
\|h\|_{\infty} \leq \sum_{n=-\infty}^{\infty}\left|\alpha_{n}\right| \cdot \sum_{n=-\infty}^{\infty}\left|\beta_{n}\right|
$$

Problem 3. Use the Fourier series of the function $f(x)=\cos a x$ on the interval $[-\pi, \pi]$, where a is not an integer, to show that

$$
\begin{aligned}
& \frac{1}{\sin a \pi}=\frac{1}{a \pi}+\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{1}{a \pi+n \pi}+\frac{1}{a \pi-n \pi}\right) \\
& \cot a \pi=\frac{1}{a \pi}+\sum_{n=1}^{\infty}\left(\frac{1}{a \pi+n \pi}+\frac{1}{a \pi-n \pi}\right)
\end{aligned}
$$

Problem 4. Find the Fourier series of the function

$$
f(x)= \begin{cases}2+\frac{x}{2 \pi}, & -\pi \leq x<0 \\ 2, & 0 \leq x \leq \pi\end{cases}
$$

and draw the graph of the sum of the Fourier series on the interval $[-3 \pi, 3 \pi]$.
Problem 5. Find the Fourier series on the interval $[-l, l]$ for the function

$$
f(x)= \begin{cases}0, & -l \leq x \leq-b \\ 1, & -b<x<b \\ 0, & b \leq x \leq l\end{cases}
$$

On which subintervals $[\alpha, \beta] \subseteq[-l, l]$ does the series converge uniformly?
Problem 6. Assume that $f(x)$ is $k-1$ times continuously differentiable on $[-\pi, \pi]$ with $f^{(j)}(-\pi)=f^{(j)}(\pi), j=0, \ldots, k-1$, and k times piecewise continuously differentiable. Show that the Fourier coefficients c_{n} of $f(x)$ satisfy $\lim _{n \rightarrow \infty} n^{k} c_{n}=0$.
Problem 7. Find the Fourier series of the following functions:
(1) $f(x)=9 \cos (x)+7 \sin (2 x)+11 \cos (3 x), x \in[-\pi, \pi]$.
(2) $f(x)=\left\{\begin{array}{cc}\sin (x) & 0<x \leq \pi \\ \cos (x) & -\pi \leq x \leq 0\end{array}\right.$.
(3) $f(x)=\left|x^{3}\right|, x \in[-\pi, \pi]$.

Problem 8. Find the complex Fourier series of the following functions:
(1) $f(x)=\sin x / 2, x \in[-\pi, \pi]$.
(2) $f(x)=\pi-x^{2}, x \in[-\pi, \pi]$.
(3) $f(x)=\left\{\begin{array}{cc}e^{i x} & 0<x<\pi \\ e^{-i x} & -\pi \leq x \leq 0\end{array}\right.$.

Problem 9. Find the Fourier series of the function $f(x)=\sin (p x / 2), p \neq 0$, $x \in[-\pi, \pi]$, and use Parseval's identity to show that $\sum_{n=1}^{\infty} \frac{n^{2}}{\left(1-4 n^{2}\right)^{2}}=\frac{\pi^{2}}{64}$.

Problem 10. Find the Fourier series of

$$
f(x)=\left\{\begin{array}{l}
h^{2}, h \leq x \leq \pi \\
0,-\pi \leq x \leq h
\end{array}\right.
$$

$(h \neq 0)$, and use it to compute $\sum_{n=1}^{\infty} \frac{\left(1-(-1)^{n} \cos (2 n)\right)}{n^{2}}$.
Problem 11. (1) Show that for all $0<r<1$,

$$
\sum_{n=-\infty}^{\infty} r^{|n|} e^{i n x}=\frac{1-r^{2}}{1-2 r \cos x+r^{2}}
$$

(2) Let $P_{r}(x)=\frac{1-r^{2}}{1-2 r \cos x+r^{2}}\left(P_{r}(x)\right.$ is called the Poisson kernel). Let $f(x)$ be a piecewise continuous function on $[-\pi, \pi]$ with Fourier series $\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$. Show that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-t) P_{r}(t) d t=\sum_{n=-\infty}^{\infty} c_{n} r^{|n|} e^{i n x}
$$

where the series converges absolutely and uniformly in x.
(3) Let $f(x)$ be a continuous periodic function on $(-\infty, \infty)$ with Fourier series $\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$. Show that

$$
\lim _{r \rightarrow 1-} \sum_{n=-\infty}^{\infty} c_{n} r^{|n|} e^{i n x}=f(x)
$$

uniformly in x.
(Hint: show that $\left\{\frac{1}{2 \pi} P_{r}(x)\right\}_{r \rightarrow 1-}$ is a periodic approximate identity.)
(Remark: this problem shows one way (there are many others) to "confront" the fact that the Fourier series of a continuous periodic function fails to converge - we "improve" the convergence by adding the factors $r^{|n|}$.)
Problem 12. (1) A finite sum of the form $\sum_{k=M}^{N} c_{k} e^{i k x}$ (where M and N are integers, $M<N)$ is called a trigonometric polynomial. Let $f(x)$ be a continuous periodic function on $(-\infty, \infty)$, show that there is a sequence of
trigonometric polynomials $\left\{p_{n}(x)\right\}_{n=1}^{\infty}$ that converges unifomly to $f(x)$ on $(-\infty, \infty)$. (Hint: use the previous problem.)
(2) Use the previous item to give a direct proof (without using Chebyshev polynomials) that the normalized trigonometric / exponential system in $L_{\mathrm{pc}}^{2}[-\pi, \pi]$ is closed.
Problem 13. (1) Let $\left\{Q_{n}(t)\right\}_{n=1}^{\infty}$ be a periodic approximate identity, i.,e., a sequence of piecewise continuous functions on the interval $(-\infty, \infty)$ that are periodic with period 2π and that satisfy the following conditions:
(a) $Q_{n}(t) \geq 0$ for all t.
(b) For every $\delta, 0<\delta<\pi, Q_{n}(t) \underset{n \rightarrow \infty}{\longrightarrow} 0$ uniformly in t on $[-\pi,-\delta] \cup[\delta, \pi]$. (c) $\int_{-\pi}^{\pi} Q_{n}(t) d t=1$.

Show that for any piecewise continuous function $f(x)$ on $(-\infty,+\infty)$ that is periodic with period 2π

$$
\int_{-\pi}^{\pi} f(x-t) Q_{n}(t) d t \underset{n \rightarrow \infty}{\longrightarrow} \frac{f(x-0)+f(x+0)}{2}
$$

for all x.
(2) Let $f(x)$ be a piecewise continuous periodic function on $(-\infty, \infty)$ with Fourier series $\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$. Show that

$$
\lim _{r \rightarrow 1-} \sum_{n=-\infty}^{\infty} c_{n} r^{|n|} e^{i n x}=\frac{f(x-0)+f(x+0)}{2}
$$

for all x.

