
SOME KEY FACTS AND FORMULAE ABOUT ORTHOGONAL
POLYNOMIALS

For ρ a strictly positive piecewise continuous function on (a, b) with
∫ b

a
ρ(x) dx <

∞ (improper Riemann integral), we consider the inner product

〈f, g〉ρ =
∫ b

a

f(x)g(x)ρ(x) dx

on the space of piecewise continuous functions on [a, b] (with the usual identification
of two functions that agree except at finitely many points); we denote this space by
L2

ρ,pc[a, b]. We also consider the cases of semiinfinite and infinite intervals (−∞, b],
[a,+∞), (−∞,∞); in these cases the space consists of piecewise continuous func-
tions on the interval with ∫ b

−∞
|f(x)|2ρ(x) dx <∞,

correspondingly in the other cases; and we assume further that∫ b

−∞
|x|kρ(x) dx < +∞,

correspondingly in the other cases, so that all the polynomials belong to the space.
[A function on an interval is called piecewise continuous if it is piecewise continuous
on any finite closed subinterval.]

There always exists a sequence of orthogonal polynomials {ψn(x)}∞n=0 that is
uniquely determined up to scaling; it can be obtained by applying the Gramm-
Schmidt orthogonalization process to the sequence of monomials {xn}∞n=0 [so in
particular ψn have real coefficients].

Notice that if the interval is symmetric (a = −b) and the weight is even (ρ(−x) =
ρ(x)) then even and odd functions are orthogonal with respect to 〈·, ·〉ρ, and there-
fore orthogonal polynomials are even for n even and odd for n odd, ψn(−x) =
(−1)nψn(x).

EXAMPLES:

(1) ρ(x) = 1 on [−1, 1] (Legendre polynomials): using integration by parts,

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n

is orthogonal to xm for m < n, so that it is a sequence of orthogonal
polynomials. We can also calculate ‖Pn‖2 — using n integrations by parts
it reduces to calculating In =

∫ 1

−1
(1−x2)n dx for which one obtains (writing

(1−x2)ndx = (1−x2)n−1dx+x 1
2n d(1−x

2)n−1 and integrating the second
summand by parts) the equation In = In−1− 1

2nIn. When the dust settles,
‖Pn‖2 = 2

2n+1 . Leading coefficient: (2n)!
2n(n!)2 . First several polynomials:

P0(x) = 1, P1(x) = x, P2(x) = 1
2 (3x2 − 1).
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(2) ρ(x) = 1√
1−x2 on [−1, 1] (Chebyshev polynomials of the 1st kind):

Tn(x) =
(−1)n2nn!

(2n)!

√
1− x2

dn

dxn
(1− x2)n−1/2

is a polynomial of degree n, and it is orthogonal to xm for m < n and
‖Tn‖2 = π/2 for n > 0, ‖T0‖2 = π — the proofs are similar to (1). Leading
coefficient: 2n−1. First several polynomials: T0(x) = 1, T1(x) = x, T2(x) =
2x2 − 1.

The trigonometric formula:

Tn(cos θ) = cosnθ

[cosnθ is a polynomial of degree n in cos θ by de Moivre formula, the
orthogonality follows from the othogonality of the cosines — and then the
equation follows by uniqueness and noticing that the norms coincide and
the leading coefficients are both positive].

(3) ρ(x) =
√

1− x2 on [−1, 1] (Chebyshev polynomials of the 2nd kind): similar
to (2),

Un(X) =
(−1)n2n(n+ 1)!

(2n+ 1)!
1√

1− x2

dn

dxn
(1− x2)n+1/2,

|Un‖2 = π/2. Leading coefficient: 2n. First several polynomials: U0(x) = 1,
U1(x) = 2x, U2(x) = 4x2 − 1.

Un(cos θ) =
sin(n+ 1)θ

sin θ
.

We have that d
dxTn(x) = nUn(x).

(4) ρ(x) = e−x2
on (−∞,+∞) (Hermite polynomials):

Hn(x) = (−1)nex2 dne−x2

dxn
,

‖Hn‖2 = 2nn!
√
π [details are again similar — integrations by parts —

where the crucial thing now is that any polynomial times e−x2
tends to 0

at ±∞; the calculation of the norm ‖Hn‖2 reduces in the end to calculation
of the integral

∫ +∞
−∞ e−x2

dx =
√
π]. Leading coefficient: 2n. First several

polynomials: H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2.
In general normalized orthogonal polynomials satisfy a three term recurrence

relation
xψn(x) = bnψn−1(x) + anψn(x) + bn+1ψn+1(x),

where the coefficients are easy to find by comparing the leading coefficients.
EXAMPLES:
(1) (2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x),
(2) 2xTn(x) = Tn+1(x) + Tn−1(x),
(3) same for Un(x),
(4) 2xHn(x) = Hn+1(x) + 2nHn−1(x).

Notice that the recurrence relation gives an easy way to calculate the polynomials
recursively starting from the first two (n = 0 and n = 1); for a practical calculation
of successive orthogonal polynomials this is usually the easiest method.
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For a finite interval, normalized orthogonal polynomials form a closed orthonor-
mal system in L2

ρ,pc[a, b]; this follows from the Weiertrass’ Theorem on uniform
polynomial approximation of continuous functions on a finite interval, since

• any piecewise continuous function can be approximated in ‖ · ‖2,ρ by con-
tinuous functions,

• on a finite interval, convergence in the supremum norm implies convegences
in L2

ρ.
[For an infinite interval, normalized orthogonal polynomials may or may not form
a closed orthonormal system, depending on the weight; Hermite polynomials do —
we will discuss it later on in the course.]

The fact that the normalized trigonometric system (real or complex) is closed
follows immediately from the fact that {Tn} is closed (this shows that the cosines
are a closed system on [0, π], hence for even functions on [−π, π]) and that {Un}
is closed (this shows that the sines are a closed system on [0, π], hence for odd
functions on [−π, π]).


