SOME KEY FACTS AND FORMULAE ABOUT ORTHOGONAL POLYNOMIALS

For ρ a strictly positive piecewise continuous function on (a, b) with $\int_{a}^{b} \rho(x) d x<$ ∞ (improper Riemann integral), we consider the inner product

$$
\langle f, g\rangle_{\rho}=\int_{a}^{b} f(x) \overline{g(x)} \rho(x) d x
$$

on the space of piecewise continuous functions on $[a, b]$ (with the usual identification of two functions that agree except at finitely many points); we denote this space by $L_{\rho, \mathrm{pc}}^{2}[a, b]$. We also consider the cases of semiinfinite and infinite intervals $(-\infty, b]$, $[a,+\infty),(-\infty, \infty)$; in these cases the space consists of piecewise continuous functions on the interval with

$$
\int_{-\infty}^{b}|f(x)|^{2} \rho(x) d x<\infty
$$

correspondingly in the other cases; and we assume further that

$$
\int_{-\infty}^{b}|x|^{k} \rho(x) d x<+\infty
$$

correspondingly in the other cases, so that all the polynomials belong to the space. [A function on an interval is called piecewise continuous if it is piecewise continuous on any finite closed subinterval.]

There always exists a sequence of orthogonal polynomials $\left\{\psi_{n}(x)\right\}_{n=0}^{\infty}$ that is uniquely determined up to scaling; it can be obtained by applying the GrammSchmidt orthogonalization process to the sequence of monomials $\left\{x^{n}\right\}_{n=0}^{\infty}$ [so in particular ψ_{n} have real coefficients].

Notice that if the interval is symmetric $(a=-b)$ and the weight is even $(\rho(-x)=$ $\rho(x))$ then even and odd functions are orthogonal with respect to $\langle\cdot, \cdot\rangle_{\rho}$, and therefore orthogonal polynomials are even for n even and odd for n odd, $\psi_{n}(-x)=$ $(-1)^{n} \psi_{n}(x)$.

EXAMPLES:
(1) $\rho(x)=1$ on $[-1,1]$ (Legendre polynomials): using integration by parts,

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

is orthogonal to x^{m} for $m<n$, so that it is a sequence of orthogonal polynomials. We can also calculate $\left\|P_{n}\right\|^{2}$ - using n integrations by parts it reduces to calculating $I_{n}=\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x$ for which one obtains (writing $\left(1-x^{2}\right)^{n} d x=\left(1-x^{2}\right)^{n-1} d x+x \frac{1}{2 n} d\left(1-x^{2}\right)^{n-1}$ and integrating the second summand by parts) the equation $I_{n}=I_{n-1}-\frac{1}{2 n} I_{n}$. When the dust settles, $\left\|P_{n}\right\|^{2}=\frac{2}{2 n+1}$. Leading coefficient: $\frac{(2 n)!}{2^{n}(n!)^{2}}$. First several polynomials: $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$.
(2) $\rho(x)=\frac{1}{\sqrt{1-x^{2}}}$ on $[-1,1]$ (Chebyshev polynomials of the 1st kind):

$$
T_{n}(x)=\frac{(-1)^{n} 2^{n} n!}{(2 n)!} \sqrt{1-x^{2}} \frac{d^{n}}{d x^{n}}\left(1-x^{2}\right)^{n-1 / 2}
$$

is a polynomial of degree n, and it is orthogonal to x^{m} for $m<n$ and $\left\|T_{n}\right\|^{2}=\pi / 2$ for $n>0,\left\|T_{0}\right\|^{2}=\pi$ - the proofs are similar to (1). Leading coefficient: 2^{n-1}. First several polynomials: $T_{0}(x)=1, T_{1}(x)=x, T_{2}(x)=$ $2 x^{2}-1$.

The trigonometric formula:

$$
T_{n}(\cos \theta)=\cos n \theta
$$

[$\cos n \theta$ is a polynomial of degree n in $\cos \theta$ by de Moivre formula, the orthogonality follows from the othogonality of the cosines - and then the equation follows by uniqueness and noticing that the norms coincide and the leading coefficients are both positive].
(3) $\rho(x)=\sqrt{1-x^{2}}$ on $[-1,1]$ (Chebyshev polynomials of the 2nd kind): similar to (2),

$$
U_{n}(X)=\frac{(-1)^{n} 2^{n}(n+1)!}{(2 n+1)!} \frac{1}{\sqrt{1-x^{2}}} \frac{d^{n}}{d x^{n}}\left(1-x^{2}\right)^{n+1 / 2}
$$

$\mid U_{n} \|^{2}=\pi / 2$. Leading coefficient: 2^{n}. First several polynomials: $U_{0}(x)=1$, $U_{1}(x)=2 x, U_{2}(x)=4 x^{2}-1$.

$$
U_{n}(\cos \theta)=\frac{\sin (n+1) \theta}{\sin \theta}
$$

We have that $\frac{d}{d x} T_{n}(x)=n U_{n}(x)$.
(4) $\rho(x)=e^{-x^{2}}$ on $(-\infty,+\infty)$ (Hermite polynomials):

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n} e^{-x^{2}}}{d x^{n}}
$$

$\left\|H_{n}\right\|^{2}=2^{n} n!\sqrt{\pi}$ [details are again similar - integrations by parts where the crucial thing now is that any polynomial times $e^{-x^{2}}$ tends to 0 at $\pm \infty$; the calculation of the norm $\left\|H_{n}\right\|^{2}$ reduces in the end to calculation of the integral $\left.\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi}\right]$. Leading coefficient: 2^{n}. First several polynomials: $H_{0}(x)=1, H_{1}(x)=2 x, H_{2}(x)=4 x^{2}-2$.
In general normalized orthogonal polynomials satisfy a three term recurrence relation

$$
x \psi_{n}(x)=b_{n} \psi_{n-1}(x)+a_{n} \psi_{n}(x)+b_{n+1} \psi_{n+1}(x),
$$

where the coefficients are easy to find by comparing the leading coefficients.
EXAMPLES:
(1) $(2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x)$,
(2) $2 x T_{n}(x)=T_{n+1}(x)+T_{n-1}(x)$,
(3) same for $U_{n}(x)$,
(4) $2 x H_{n}(x)=H_{n+1}(x)+2 n H_{n-1}(x)$.

Notice that the recurrence relation gives an easy way to calculate the polynomials recursively starting from the first two ($n=0$ and $n=1$); for a practical calculation of successive orthogonal polynomials this is usually the easiest method.

For a finite interval, normalized orthogonal polynomials form a closed orthonormal system in $L_{\rho, \mathrm{pc}}^{2}[a, b]$; this follows from the Weiertrass' Theorem on uniform polynomial approximation of continuous functions on a finite interval, since

- any piecewise continuous function can be approximated in $\|\cdot\|_{2, \rho}$ by continuous functions,
- on a finite interval, convergence in the supremum norm implies convegences in L_{ρ}^{2}.
[For an infinite interval, normalized orthogonal polynomials may or may not form a closed orthonormal system, depending on the weight; Hermite polynomials do we will discuss it later on in the course.]

The fact that the normalized trigonometric system (real or complex) is closed follows immediately from the fact that $\left\{T_{n}\right\}$ is closed (this shows that the cosines are a closed system on $[0, \pi]$, hence for even functions on $[-\pi, \pi]$) and that $\left\{U_{n}\right\}$ is closed (this shows that the sines are a closed system on $[0, \pi]$, hence for odd functions on $[-\pi, \pi]$).

