SOME KEY FACTS AND FORMULAE ABOUT ORTHOGONAL
POLYNOMIALS

For p a strictly positive piecewise continuous function on (a, b) with f: plx)dr <
oo (improper Riemann integral), we consider the inner product

b
(fa)p = / F@)g@)p(x) de

on the space of piecewise continuous functions on [a, b] (with the usual identification
of two functions that agree except at finitely many points); we denote this space by
L2 .la,b]. We also consider the cases of semiinfinite and infinite intervals (—oo, b],
[a,+00), (—00,00); in these cases the space consists of piecewise continuous func-
tions on the interval with

b
/ (@) Po(z) da < oo,

— 00

correspondingly in the other cases; and we assume further that

b
/ |lz|* p(x) dz < +oo0,
— 00

correspondingly in the other cases, so that all the polynomials belong to the space.
[A function on an interval is called piecewise continuous if it is piecewise continuous
on any finite closed subinterval.]

There always exists a sequence of orthogonal polynomials {i,(2)}52, that is
uniquely determined up to scaling; it can be obtained by applying the Gramm-
Schmidt orthogonalization process to the sequence of monomials {z"}5%, [so in
particular 1, have real coefficients].

Notice that if the interval is symmetric (¢ = —b) and the weight is even (p(—z) =
p(x)) then even and odd functions are orthogonal with respect to (-, -),, and there-
fore orthogonal polynomials are even for n even and odd for n odd, ,(—z) =

(=1)"¢n ().
EXAMPLES:
(1) p(x) =1 on [—1,1] (Legendre polynomials): using integration by parts,
1 dr
P,(x) = — (2 -1)"
(z) 27n! dxm (@ )

is orthogonal to ™ for m < n, so that it is a sequence of orthogonal
polynomials. We can also calculate || P,||> — using n integrations by parts
it reduces to calculating I,, = f_ll (1—22)™ da for which one obtains (writing
(1—2?)"de = (1—2%)""'do+ 25 d(1—2*)""! and integrating the second
summand by parts) the equation I,, = I,,_1 — ﬁ[n. When the dust settles,

IP.]|* = 525 Leading coefficient: 2,(12(:3;2

Py(z) =1, Pi(z) = z, Pa(z) = 3(32% - 1).
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First several polynomials:
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(2) p(z) = = on [~1,1] (Chebyshev polynomials of the 1st kind):

_ (=1)"2"n! 2 d" 2\n—1/2
T, (z) = T =22 (1 -7 /
is a polynomial of degree n, and it is orthogonal to ™ for m < n and
| T ||* = 7/2 for n > 0, || Tp||* = © — the proofs are similar to (1). Leading
coefficient: 2771, First several polynomials: Ty(z) = 1, Ty (z) = z, To(z) =
222 — 1.

The trigonometric formula:

T, (cos8) = cosnb

[cosmf is a polynomial of degree n in cosf by de Moivre formula, the
orthogonality follows from the othogonality of the cosines — and then the
equation follows by uniqueness and noticing that the norms coincide and
the leading coefficients are both positive].

(3) p(x) =1 — 22 on[-1,1] (Chebyshev polynomials of the 2nd kind): similar
to (2),

(D2 (a1 dt
(2n + 1)! ,fozﬁ( -7 ’

|Un||? = 7/2. Leading coefficient: 2". First several polynomials: Up(z) = 1,
Ui(z) = 2z, Us(x) = 422 — 1.

Un(X) =

sin(n 4 1)0
Un(cos) = ———.
(cos 6) sin 0
We have that %Tn(x) = nU,(x).
(4) p(x) = e~ on (—00,400) (Hermite polynomials):
:122 dne_wz
dz™ '

|Hn||*> = 2"n!y/m [details are again similar — integrations by parts —

H,(x)=(-1)"e

where the crucial thing now is that any polynomial times e~ tends to 0
at +o0; the calculation of the norm | H,||? reduces in the end to calculation

of the integral fjoooo e dr = /7). Leading coefficient: 2". First several
polynomials: Hy(z) =1, Hy(z) = 2z, Ho(x) = 42? — 2.
In general normalized orthogonal polynomials satisfy a three term recurrence
relation

3:1/}77,(‘%) = bnwn—l(x) + anq/}n(x) + bn+1wn+1(x)a

where the coefficients are easy to find by comparing the leading coefficients.
EXAMPLES:

(1) 2n+1DaPy(z) = (n+1)Pyi(z) + nPar1(2),

(2) 22T (2) = Toy1(z) + Tn—1(2),

(3) same for Uy, (z),

(4) 22Hp(x) = Hpy1(x) + 2nH, 1 ().
Notice that the recurrence relation gives an easy way to calculate the polynomials
recursively starting from the first two (n = 0 and n = 1); for a practical calculation
of successive orthogonal polynomials this is usually the easiest method.
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For a finite interval, normalized orthogonal polynomials form a closed orthonor-
mal system in Lipc [a,b]; this follows from the Weiertrass’ Theorem on uniform
polynomial approximation of continuous functions on a finite interval, since

e any piecewise continuous function can be approximated in || - ||2,, by con-
tinuous functions,
e on a finite interval, convergence in the supremum norm implies convegences
in L%.
[For an infinite interval, normalized orthogonal polynomials may or may not form
a closed orthonormal system, depending on the weight; Hermite polynomials do —
we will discuss it later on in the course.]

The fact that the normalized trigonometric system (real or complex) is closed
follows immediately from the fact that {T},} is closed (this shows that the cosines
are a closed system on [0, 7], hence for even functions on [—m,n]) and that {U,}
is closed (this shows that the sines are a closed system on [0, 7], hence for odd
functions on [—m,7]).



