EXERCISES ON ORTHOGONAL POLYNOMIALS

Problem 1. (1) Prove that the Legendre polynomials satisfy the differential equation:

$$
\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d}{d x} P_{n}(x)\right)+n(n+1) P_{n}(x)=0
$$

(2) Prove that all the roots of $P_{n}(x)$ are distinct and are contained in the interval $(-1,1)$. (Hint: notice that all the derivatives of $\left(1-x^{2}\right)^{n}$ up to order $n-1$ vanish at ± 1; now apply Rolle's Theorem successively to $\left(1-x^{2}\right)^{n}$ and its derivatives to see that $\frac{d^{j}}{d x^{j}}\left(1-x^{2}\right)^{n}, j \leq n$, has j distinct zeroes in $(-1,1)$.)
(3) Find a polynomial P of degree at most 4 such that $\int_{-1}^{1}\left|x^{5}-P(x)\right|^{2} d x$ is minimal.

Problem 2. (1) Show that the Chebyshev polynomials of the first kind satisfy the differential equation:

$$
\left(1-x^{2}\right) T_{n}^{\prime \prime}(x)-x T_{n}^{\prime}(x)+n^{2} T_{n}(x)=0
$$

(2) Show that the Chebyshev polynomials of the second kind satisfy the differential equation:

$$
\left(1-x^{2}\right) U_{n}^{\prime \prime}(x)-3 x U_{n}^{\prime}(x)+n(n+2) U_{n}(x)=0 .
$$

(3) Show that $T_{n}\left(T_{m}(x)\right)=T_{n m}(x)$.
(4) Show that $T_{n}^{\prime}(x)=n U_{n-1}(x)$.
(5) Find a polynomial P of degree at most 4 such that $\int_{-1}^{1}\left|x^{5}-P(x)\right|^{2} \frac{d x}{\sqrt{1-x^{2}}}$ is minimal.
(6) Find a polynomial P of degree at most 4 such that $\int_{-1}^{1}\left|x^{5}-P(x)\right|^{2} \sqrt{1-x^{2}} d x$ is minimal.

Problem 3. (1) Show that the Hermite poloynomials satisfy the differential equation:

$$
\left(e^{-x^{2} / 2} H_{n}^{\prime}(x)\right)^{\prime}+n e^{-x^{2} / 2} H_{n}(x)=0
$$

(2) Prove that all the roots of $H_{n}(x)$ are distinct.
(3) Show that $H_{n}^{\prime}(x)=2 x H_{n}(x)-H_{n+1}(x)$.
(4) Find a polynomial P of degree at most 4 such that $\int_{-\infty}^{\infty}\left|x^{5}-P(x)\right|^{2} e^{-x^{2} / 2} d x$ is minimal.
Problem 4. (1) Show that $L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(e^{-x} x^{n}\right)$ is a polynomial of degree n with leading coefficient $1 / n$!; these are called Laguerre polynomials.
(2) Show that the Laguerre polynomials are orthogonal polynomials with respect to the weight $\rho(x)=e^{-x}$ on $[0,+\infty)$, and that $\left\|L_{n}\right\|_{2, \rho}=1$.
(3) Show that the Laguerre polynomials satisfy the three term recurrent relation:

$$
x L_{n}(x)=-(n+1) L_{n+1}(x)+(2 n+1) L_{n}(x)-n L_{n-1}(x)
$$

(4) Show that the Laguerre polynomials satisfy the differential equation:

$$
x L_{n}^{\prime \prime}(x)+(1-x) L_{n}^{\prime}(x)+n L_{n}(x)=0 .
$$

(5) Show that all the roots of $L_{n}(x)$ are distinct and are contained in the interval $(0,+\infty)$.
(6) Find a polynomial P of degree at most 4 such that that $\int_{0}^{\infty}\left|x^{5}-P(x)\right|^{2} e^{-x} d x$ is minimal.

Problem 5. (1) Show that the Chebyshev polynomials of the first kind are orthogonal in the space of piecewise continuous functions on the interval $[-1,1]$ with the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) \overline{g(x)} \frac{d x}{\sqrt{1-x^{2}}}+\int_{-1}^{1} f^{\prime}(x) \overline{g^{\prime}(x)} \sqrt{1-x^{2}} d x
$$

and calculate their norms with respect to this inner product. (Hint: use Problem 2.4.)
(2) Show that there does not exist a piecewise continuous function f on $[-1,1]$ such that
$\lim _{n \rightarrow \infty} n^{-\alpha}\left(\int_{-1}^{1} f(x) T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}}+n \int_{-1}^{1} f^{\prime}(x) U_{n-1} \sqrt{1-x^{2}} d x\right)=c$,
where $\alpha \leq-1 / 2$ and c is a nonzero complex number. (Hint: use Bessel's inequality.)
(3) Find a polynomial P of degree at most 4 such that

$$
\int_{-1}^{1}\left|x^{5}-P(x)\right|^{2} \frac{d x}{\sqrt{1-x^{2}}}+\int_{-1}^{1}\left|5 x^{4}-P^{\prime}(x)\right|^{2} \sqrt{1-x^{2}} d x
$$

is minimal.

