PRACTICE HOMEWORK NO. 10: EIGENVALUES AND DIAGONALIZATION

Problem 1. Define $T: F_3[t] \to F_3[t]$ by

 $T(at^{2} + bt + c) = (-4a - 6b - 2c)t^{2} + (5a + 8b + 5c)t + (-4a - 7b - 6c).$

Is T diagonalizable for $F = \mathbb{Q}, \mathbb{R}, \mathbb{C}$? If yes, find a diagonalizing basis and the diagonal matrix representing T in this basis.

(Hint: If a rational number p/q, $p, q \in \mathbb{Z}$, is a root of a polynomial with integer coefficients, then p divides the constant term and q divides the coefficient of the highest power of t.)

Problem 2. Define $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ by

$$T\left(\begin{bmatrix} w & x \\ y & z \end{bmatrix}\right) = \begin{bmatrix} z & y \\ x & w \end{bmatrix}$$

Show that T is diagonalizable and compute T^n $(n \in \mathbb{N})$ and $(I+T)^4$.

Problem 3. Let

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 4 & -1 \\ 0 & 2 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}.$$

Find the eigenvalues of A^4 , $4A^3 - 2A + I$.

Problem 4.

(1) Let $A = \begin{bmatrix} 5 & -12 \\ 2 & -5 \end{bmatrix} \in \mathbb{C}^{2 \times 2}$. Find all matrices $B \in \mathbb{C}^{2 \times 2}$ so that $B^2 = A$. (2) Let $A = \begin{bmatrix} -3 & 0 \\ -3 & 0 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$. Find all matrices $B \in \mathbb{R}^{2 \times 2}$ so that $-B^2 + 2B = A$.

Problem 5. Let F be a field containing the field \mathbb{Q} , and define $T: F^3 \to F^3$ by

$$T((x, y, z)) = (ax + ay + z, 2y + 2z, z)$$

 $(a \in F)$. Find all the values of a so that T is not diagonalizable. Does the answer depend on the field F?

Problem 6.

- (1) Let $A \in \mathbb{R}^{3\times 3}$ with the characteristic polynomial $f = t^3 2t^2 + 2$. Is A diagonalizable over \mathbb{Q} ? over \mathbb{R} ? over \mathbb{C} ?
- (2) Let $A \in \mathbb{R}^{2 \times 2}$ with the characteristic polynomial $f = t^2 1$ and with eigenvector $\begin{bmatrix} 1\\1 \end{bmatrix}$. Compute $A^{10} \begin{bmatrix} 1\\1 \end{bmatrix}$.

Problem 7. Which among the following matrices

[1	1	1		[1	1	1]	[1	0	0		[1	0	0]		[1	1	0
1	1	1	,	0	1	1	, 0	1	0	,	0	1	0	,	0	3	0
1	1	3		0	0	$\begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$	0	0	3		0	0	π		0	0	1

represent the same linear transformation on \mathbb{R}^3 with respect to different bases?

Problem 8. Let A be an upper triangular matrix having n distinct elements on the diagonal. Prove that A is diagonalizable.

Problem 9. Let $A \in F^{n \times n}$ be such that the sum of the elements of A in every row equals 1. Show that 1 is an eigenvalue of A.

Problem 10. Let $T: V \to V$ be a linear transformation on a vector space V of dimension n over a field F, and assume that the characteristic polynomial f of T splits over F into linear factors. Show that det T equals $(-1)^n$ times the product of the eigenvalues of T, where each eigenvalue is repeated as many times as its multiplicity.

Problem 11. We define the *trace* of a matrix $A \in F^{n \times n}$ to be the sum of its diagonal elements.

- (1) Show that the trace of A is minus the coefficient of t^{n-1} in the characteristic polynomial of A.
- (2) We define the trace of a linear transformation T on a finite dimensional vector space to be the trace of a matrix representing T with respect to some basis; show that the trace of T is well defined.
- (3) Assume that the characteristic polynomial f of T splits over F into linear factors. Show that the trace of T equals the sum of the eigenvalues of T, where each eigenvalue is repeated as many times as its multiplicity.

Problem 12. Let $B \in F^{n \times n}$ be a diagonalizable matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_s$ of multiplicity k_1, \ldots, k_s respectively. Let $\mathcal{C} = \{A \in F^{n \times n} : BA = AB\}$. Show that \mathcal{C} is a vector subspace of $F^{n \times n}$ of dimension $k_1^2 + \cdots + k_s^2$.

Problem 13. Let $T: V \to V$ be a linear transformation on a finite dimensional vector space V over F.

- (1) Let v be an eigenvector of T belonging to the eigenvalue λ , and let $n \in \mathbb{N}$. Show that v is an eigenvector of T^n belonging to the eigenvalue λ^n .
- (2) Let v be an eigenvector of T belonging to the eigenvalue λ , and let $g \in F[t]$. Show that v is an eigenvector of g(T) belonging to the eigenvalue $g(\lambda)$.
- (3) Assume that $p \in F[t]$ splits into linear factors over F and that $p(\lambda) \neq 0$ for each eigenvalue λ of T. Show that p(T) is invertible.
- (4) Assume that F is algebraically closed and let $g \in F[t]$. Show that the eigenvalues of g(T) are of the form $g(\lambda)$ where λ is an eigenvalue of T.

Problem 14. Let $B \in F^{n \times n}$ and define $L_B \colon F^{n \times n} \to F^{n \times n}$ by $L_B(A) = BA$. Show that:

- (1) λ is an eigenvalue of L_B if and only if λ is an eigenvalue of B.
- (2) Let λ be an eigenvalue of *B* having *k* linearly independent eigenvectors; then λ is an eigenvalue of L_B having kn linearly independent eigenvectors.
- (3) L_B is diagonalizable if and only if B is diagonalizable.