PRACTICE HOMEWORK NO. 10: EIGENVALUES AND DIAGONALIZATION

Problem 1. Define $T: F_{3}[t] \rightarrow F_{3}[t]$ by

$$
T\left(a t^{2}+b t+c\right)=(-4 a-6 b-2 c) t^{2}+(5 a+8 b+5 c) t+(-4 a-7 b-6 c)
$$

Is T diagonalizable for $F=\mathbb{Q}, \mathbb{R}, \mathbb{C}$? If yes, find a diagonalizing basis and the diagonal matrix representing T in this basis.
(Hint: If a rational number $p / q, p, q \in \mathbb{Z}$, is a root of a polynomial with integer coefficients, then p divides the constant term and q divides the coefficient of the highest power of t.)

Problem 2. Define $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ by

$$
T\left(\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]\right)=\left[\begin{array}{cc}
z & y \\
x & w
\end{array}\right] .
$$

Show that T is diagonalizable and compute $T^{n}(n \in \mathbb{N})$ and $(I+T)^{4}$.
Problem 3. Let

$$
A=\left[\begin{array}{ccc}
1 & 3 & -1 \\
0 & 4 & -1 \\
0 & 2 & 1
\end{array}\right] \in \mathbb{R}^{3 \times 3} .
$$

Find the eigenvalues of $A^{4}, 4 A^{3}-2 A+I$.

Problem 4.

(1) Let $A=\left[\begin{array}{cc}5 & -12 \\ 2 & -5\end{array}\right] \in \mathbb{C}^{2 \times 2}$. Find all matrices $B \in \mathbb{C}^{2 \times 2}$ so that $B^{2}=A$.
(2) Let $A=\left[\begin{array}{cc}-3 & 0 \\ -3 & 0\end{array}\right] \in \mathbb{R}^{2 \times 2}$. Find all matrices $B \in \mathbb{R}^{2 \times 2}$ so that $-B^{2}+2 B=A$.

Problem 5. Let F be a field containing the field \mathbb{Q}, and define $T: F^{3} \rightarrow F^{3}$ by

$$
T((x, y, z))=(a x+a y+z, 2 y+2 z, z)
$$

$(a \in F)$. Find all the values of a so that T is not diagonalizable. Does the answer depend on the field F ?

Problem 6.

(1) Let $A \in \mathbb{R}^{3 \times 3}$ with the characteristic polynomial $f=t^{3}-2 t^{2}+2$. Is A diagonalizable over \mathbb{Q} ? over \mathbb{R} ? over \mathbb{C} ?
(2) Let $A \in \mathbb{R}^{2 \times 2}$ with the characteristic polynomial $f=t^{2}-1$ and with eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Compute $A^{10}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Problem 7. Which among the following matrices

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 3
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 3
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \pi
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

represent the same linear transformation on \mathbb{R}^{3} with respect to different bases?

Problem 8. Let A be an upper triangular matrix having n distinct elements on the diagonal. Prove that A is diagonalizable.
Problem 9. Let $A \in F^{n \times n}$ be such that the sum of the elements of A in every row equals 1 . Show that 1 is an eigenvalue of A.

Problem 10. Let $T: V \rightarrow V$ be a linear transformation on a vector space V of dimension n over a field F, and assume that the characteristic polynomial f of T splits over F into linear factors. Show that $\operatorname{det} T$ equals $(-1)^{n}$ times the product of the eigenvalues of T, where each eigenvalue is repeated as many times as its multiplicity.

Problem 11. We define the trace of a matrix $A \in F^{n \times n}$ to be the sum of its diagonal elements.
(1) Show that the trace of A is minus the coefficient of t^{n-1} in the characteristic polynomial of A.
(2) We define the trace of a linear transformation T on a finite dimensional vector space to be the trace of a matrix representing T with respect to some basis; show that the trace of T is well defined.
(3) Assume that the characteristic polynomial f of T splits over F into linear factors. Show that the trace of T equals the sum of the eigenvalues of T, where each eigenvalue is repeated as many times as its multiplicity.
Problem 12. Let $B \in F^{n \times n}$ be a diagonalizable matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{s}$ of multiplicity k_{1}, \ldots, k_{s} respectively. Let $\mathcal{C}=\left\{A \in F^{n \times n}: B A=A B\right\}$. Show that \mathcal{C} is a vector subspace of $F^{n \times n}$ of dimension $k_{1}^{2}+\cdots+k_{s}^{2}$.
Problem 13. Let $T: V \rightarrow V$ be a linear transformation on a finite dimensional vector space V over F.
(1) Let v be an eigenvector of T belonging to the eigenvalue λ, and let $n \in \mathbb{N}$. Show that v is an eigenvector of T^{n} belonging to the eigenvalue λ^{n}.
(2) Let v be an eigenvector of T belonging to the eigenvalue λ, and let $g \in F[t]$. Show that v is an eigenvector of $g(T)$ belonging to the eigenvalue $g(\lambda)$.
(3) Assume that $p \in F[t]$ splits into linear factors over F and that $p(\lambda) \neq 0$ for each eigenvalue λ of T. Show that $p(T)$ is invertible.
(4) Assume that F is algebraically closed and let $g \in F[t]$. Show that the eigenvalues of $g(T)$ are of the form $g(\lambda)$ where λ is an eigenvalue of T.

Problem 14. Let $B \in F^{n \times n}$ and define $L_{B}: F^{n \times n} \rightarrow F^{n \times n}$ by $L_{B}(A)=B A$. Show that:
(1) λ is an eigenvalue of L_{B} if and only if λ is an eigenvalue of B.
(2) Let λ be an eigenvalue of B having k linearly independent eigenvectors; then λ is an eigenvalue of L_{B} having $k n$ linearly independent eigenvectors.
(3) L_{B} is diagonalizable if and only if B is diagonalizable.

