PRACTICE HOMEWORK NO. 9: DETERMINANTS

Problem 1. Compute the determinants of the following matrices:

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 2 & -9 & 2 \\
1 / 4 & 3 / 4 & 9 / 2 & 5 / 4 \\
-3 & 0 & 27 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \in \mathbb{Q}^{4 \times 4},\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right] \in \mathbb{F}_{2}^{4 \times 4},} \\
{\left[\begin{array}{cccc}
1 & i & -1 & i \\
0 & 1 & 0 & i \\
1+i & 2+i & 3+i & 4+i \\
i & 2 i & 3 i & 4 i
\end{array}\right] \in \mathbb{C}^{4 \times 4},\left[\begin{array}{cccc}
1 & a & a & a \\
a & 1 & a & a \\
a & a & 1 & a \\
a & a & a & 1
\end{array}\right] \in F^{4 \times 4}(a \in F, F \text { a field }) .}
\end{gathered}
$$

Problem 2. Check that the following matrices over \mathbb{R} are invertible by verifying that $\operatorname{det} A \neq 0$, and then compute A^{-1} using the classical adjoint formula $A^{-1}=$ $\frac{1}{\operatorname{det} A} \operatorname{adj} A$:

$$
\left[\begin{array}{ccc}
-2 & 3 & 2 \\
6 & 0 & 3 \\
4 & 1 & -1
\end{array}\right], \quad\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right] \quad(\theta \in \mathbb{R})
$$

Problem 3. Solve the following two systems of linear equations over \mathbb{Q} using Cramer's rule:

$$
\begin{gathered}
x+y+z=11,2 x-6 y-z=0,3 x+4 y+2 z=0 \\
3 x-2 y=4,3 y-2 z=6,3 z-2 x=-1
\end{gathered}
$$

Problem 4.

(1) A matrix $A \in F^{n \times n}$ is called skew-symmetric (or anti-symmetric) if $A^{\top}=$ $-A$. Show that if A is a skew-symmetric matrix of odd order n over a field F that does not contain the field \mathbb{F}_{2} of two elements, then $\operatorname{det} A=0$.
(2) Is the statement true for matrices of even order n ? (Prove, or give a counterexample.)
(3) Is the stement true for matrices of odd order over the field \mathbb{F}_{2} ? (Prove, or give a counterexample.)

Problem 5. A matrix $A \in F^{n \times n}$ is called orthogonal if $A^{\top} A=I$. Show that if A is an orthogonal matrix, then $\operatorname{det} A= \pm 1$. For every n, given an example of an orthogonal matrix $A \in \mathbb{R}^{n \times n}$ so that $\operatorname{det} A=-1$.

Problem 5. A matrix $A \in \mathbb{C}^{n \times n}$ is called unitary if $A^{*} A=I$ (where A^{*} denotes the conjugate transpose of a complex matrix). Show that if A is a unitary matrix, then $|\operatorname{det} A|=1$.

Problem 6. Prove the following statements, or give a counterexample:
(1) If A and B are row equivalent matrices, then $\operatorname{det} A=\operatorname{det} B$.
(2) If A and B are row equivalent matrices and $\operatorname{det} A=0$, then $\operatorname{det} B=0$.
(3) If A and B are row equivalent matrices and $\operatorname{det} A \neq 0$, then $\operatorname{det} B \neq 0$.
(4) $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$.
(5) If a square matrix A satisfying $A^{2}-A+I=0$, then $\operatorname{det} A \neq 0$.

Problem 6. Let $B \in F^{n \times n}$ and define a function T_{B} on $F^{n \times n}$ by $T_{B}(A)=A B-$ $B A$. Show that T_{B} is a linear transformation, and that $\operatorname{det} T_{B}=0$.

Problem 7.

(1) Let $A \in F^{n \times n}, A \neq 0$. An $r \times r$ submatrix of A is any $r \times r$ matrix obtained by deleting $n-r$ rows and $n-r$ columns of A. The determinant rank of A is the largest integer $r, 1 \leq r \leq n$, such that there is some $r \times r$ submatrix of A with a nonzero determinant. Show that the determinant rank of A equals the rank of A.
(2) Let $A \in F^{n \times n}$ be a matrix of rank $n-1$. Show that $\operatorname{adj} A$ has rank 1 , and that every nonzero column of $\operatorname{adj} A$ is a basis of $\operatorname{ker} A$.

Problem 8. Let $B \in F^{n \times n}$ and define functions L_{B} and R_{B} on $F^{n \times n}$ by $L_{B}(A)=$ $B A$ and $R_{B}(A)=A B$. Show that L_{B} and R_{B} are linear transformations, and that $\operatorname{det} L_{B}=(\operatorname{det} B)^{n}, \operatorname{det} R_{B}=(\operatorname{det} B)^{n}$.

Problem 9. Denote by $V\left(\alpha_{1}, \alpha_{2} \ldots, \alpha_{n}\right)\left(\alpha_{1}, \alpha_{2} \ldots, \alpha_{n} \in F, F\right.$ a field $)$ the determinant of the so called Vandermonde matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{1}^{n-1} & \alpha_{2}^{n-1} & \cdots & \alpha_{n}^{n-1}
\end{array}\right] .
$$

(1) Show that $V\left(t, \alpha_{2} \ldots, \alpha_{n}\right)$ is a polynomial of degree at most $n-1$, with the coefficient of t^{n-1} equal to $V\left(\alpha_{2} \ldots, \alpha_{n}\right)$, and with roots $\alpha_{2} \ldots, \alpha_{n}$.
(2) Assume that $\alpha_{2} \ldots, \alpha_{n}$ are distinct. Show that

$$
V\left(t, \alpha_{2} \ldots, \alpha_{n}\right)=V\left(\alpha_{2} \ldots, \alpha_{n}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{n}\right) .
$$

(3) Show that

$$
\begin{aligned}
& V\left(\alpha_{1}, \alpha_{2} \ldots, \alpha_{n}\right)=\left(\alpha_{2}-\alpha_{1}\right) \cdots\left(\alpha_{2}-\alpha_{n}\right) \\
&\left(\alpha_{3}-\alpha_{2}\right) \cdots\left(\alpha_{n}-\alpha_{2}\right) \cdots\left(\alpha_{n}-\alpha_{n-1}\right)
\end{aligned}
$$

(that is, for each $i=1,2, \ldots, n-1$, we take a product $\left(\alpha_{i+1}-\alpha_{i}\right) \cdots\left(\alpha_{n}-\right.$ α_{i}), and then multiply all of these together). (Hint: prove the statement by induction on n using the previous item.).

