PRACTICE HOMEWORK NO. 9: DETERMINANTS

Problem 1. Compute the determinants of the following matrices:

$$\begin{bmatrix} 1 & 2 & -9 & 2\\ 1/4 & 3/4 & 9/2 & 5/4\\ -3 & 0 & 27 & 0\\ 1 & 1 & 0 & 1 \end{bmatrix} \in \mathbb{Q}^{4 \times 4}, \quad \begin{bmatrix} 1 & 1 & 0 & 1\\ 0 & 1 & 1 & 1\\ 1 & 0 & 1 & 1\\ 1 & 1 & 1 & 0 \end{bmatrix} \in \mathbb{F}_2^{4 \times 4},$$
$$\begin{bmatrix} 1 & i & -1 & i\\ 0 & 1 & 0 & i\\ 1+i & 2+i & 3+i & 4+i\\ i & 2i & 3i & 4i \end{bmatrix} \in \mathbb{C}^{4 \times 4}, \quad \begin{bmatrix} 1 & a & a & a\\ a & 1 & a & a\\ a & a & 1 & a\\ a & a & a & 1 \end{bmatrix} \in F^{4 \times 4} \ (a \in F, F \text{ a field}).$$

Problem 2. Check that the following matrices over \mathbb{R} are invertible by verifying that det $A \neq 0$, and then compute A^{-1} using the classical adjoint formula $A^{-1} = \frac{1}{\det A} \operatorname{adj} A$:

$$\begin{bmatrix} -2 & 3 & 2\\ 6 & 0 & 3\\ 4 & 1 & -1 \end{bmatrix}, \begin{bmatrix} \cos\theta & 0 & -\sin\theta\\ 0 & 1 & 0\\ \sin\theta & 0 & \cos\theta \end{bmatrix} (\theta \in \mathbb{R}).$$

Problem 3. Solve the following two systems of linear equations over \mathbb{Q} using Cramer's rule:

$$\begin{aligned} x+y+z &= 11, \ 2x-6y-z = 0, \ 3x+4y+2z = 0; \\ 3x-2y &= 4, \ 3y-2z = 6, \ 3z-2x = -1. \end{aligned}$$

Problem 4.

- (1) A matrix $A \in F^{n \times n}$ is called skew-symmetric (or anti-symmetric) if $A^{\top} = -A$. Show that if A is a skew-symmetric matrix of odd order n over a field F that does not contain the field \mathbb{F}_2 of two elements, then det A = 0.
- (2) Is the statement true for matrices of even order n? (Prove, or give a counterexample.)
- (3) Is the stement true for matrices of odd order over the field \mathbb{F}_2 ? (Prove, or give a counterexample.)

Problem 5. A matrix $A \in F^{n \times n}$ is called orthogonal if $A^{\top}A = I$. Show that if A is an orthogonal matrix, then det $A = \pm 1$. For every n, given an example of an orthogonal matrix $A \in \mathbb{R}^{n \times n}$ so that det A = -1.

Problem 5. A matrix $A \in \mathbb{C}^{n \times n}$ is called unitary if $A^*A = I$ (where A^* denotes the conjugate transpose of a complex matrix). Show that if A is a unitary matrix, then $|\det A| = 1$.

Problem 6. Prove the following statements, or give a counterexample:

- (1) If A and B are row equivalent matrices, then $\det A = \det B$.
- (2) If A and B are row equivalent matrices and det A = 0, then det B = 0.
- (3) If A and B are row equivalent matrices and det $A \neq 0$, then det $B \neq 0$.
- (4) $\det(A+B) = \det A + \det B.$
- (5) If a square matrix A satisfying $A^2 A + I = 0$, then det $A \neq 0$.

Problem 6. Let $B \in F^{n \times n}$ and define a function T_B on $F^{n \times n}$ by $T_B(A) = AB - BA$. Show that T_B is a linear transformation, and that det $T_B = 0$.

Problem 7.

- (1) Let $A \in F^{n \times n}$, $A \neq 0$. An $r \times r$ submatrix of A is any $r \times r$ matrix obtained by deleting n - r rows and n - r columns of A. The *determinant rank* of Ais the largest integer $r, 1 \leq r \leq n$, such that there is some $r \times r$ submatrix of A with a nonzero determinant. Show that the determinant rank of Aequals the rank of A.
- (2) Let $A \in F^{n \times n}$ be a matrix of rank n 1. Show that $\operatorname{adj} A$ has rank 1, and that every nonzero column of $\operatorname{adj} A$ is a basis of ker A.

Problem 8. Let $B \in F^{n \times n}$ and define functions L_B and R_B on $F^{n \times n}$ by $L_B(A) = BA$ and $R_B(A) = AB$. Show that L_B and R_B are linear transformations, and that det $L_B = (\det B)^n$, det $R_B = (\det B)^n$.

Problem 9. Denote by $V(\alpha_1, \alpha_2, \ldots, \alpha_n)$ $(\alpha_1, \alpha_2, \ldots, \alpha_n \in F, F \text{ a field})$ the determinant of the so called *Vandermonde matrix*

1	1	• • •	1	
α_1	α_2	•••	α_n	
÷	:	÷	÷	•
α_1^{n-1}	α_2^{n-1}		α_n^{n-1}	

- (1) Show that $V(t, \alpha_2, \ldots, \alpha_n)$ is a polynomial of degree at most n 1, with the coefficient of t^{n-1} equal to $V(\alpha_2, \ldots, \alpha_n)$, and with roots $\alpha_2, \ldots, \alpha_n$.
- (2) Assume that $\alpha_2 \ldots, \alpha_n$ are distinct. Show that

$$V(t, \alpha_2 \dots, \alpha_n) = V(\alpha_2 \dots, \alpha_n)(t - \alpha_2) \cdots (t - \alpha_n).$$

(3) Show that

 $V(\alpha_1, \alpha_2 \dots, \alpha_n) = (\alpha_2 - \alpha_1) \cdots (\alpha_2 - \alpha_n)$ $(\alpha_3 - \alpha_2) \cdots (\alpha_n - \alpha_2) \cdots (\alpha_n - \alpha_{n-1})$

(that is, for each i = 1, 2, ..., n-1, we take a product $(\alpha_{i+1} - \alpha_i) \cdots (\alpha_n - \alpha_i)$, and then multiply all of these together). (**Hint**: prove the statement by induction on n using the previous item.).