Problem 12, Practice Assignment No. 5

Consider the matrix equation

$$
\begin{equation*}
x_{1} A+x_{2} A^{2}+\cdots+x_{2014} A^{2014}=0_{2 \times 2} \tag{1}
\end{equation*}
$$

with the (scalar) unknowns $x_{1}, x_{2}, \ldots, x_{2014}$. Since a 2×2 matrix has 4 entries, this is in fact a linear system of 4 equations in 2014 unknowns; furthermore, this is a homogeneous linear system. Since $2014>4$, it follows that this system has a non-trivial solution, i.e., there is a solution $x_{1}, x_{2}, \ldots, x_{2014}$ of (1) with not all the x s equal to zero.

Let $j, 1 \leq j \leq 2014$, be the largest index so that $x_{j} \neq 0$. We then have

$$
x_{1} A+x_{2} A^{2}+\cdots+x_{j-1} A^{j-1}+x_{j} A^{j}=0_{2 \times 2},
$$

and

$$
A^{j}=-\frac{x_{1}}{x_{j}} A-\frac{x_{2}}{x_{j}} A^{2}-\cdots-\frac{x_{j-1}}{x_{j}} A^{j-1}
$$

We can multiply both sides by the matrix A^{2014-j}; we obtain

$$
A^{2014}=-\frac{x_{1}}{x_{j}} A^{1+2014-j}-\frac{x_{2}}{x_{j}} A^{2+2014-j}-\cdots-\frac{x_{j-1}}{x_{j}} A^{2013},
$$

meaning that A^{2014} belongs to the linear span of $A, A^{2}, \ldots, A^{2013}$, as required.

