FINITE-DIMENSIONAL CONTRACTIVE REALIZATIONS ON POLYNOMIALLY DEFINED DOMAINS AND DETERMINANTAL REPRESENTATIONS OF MULTIVARIABLE POLYNOMIALS

DMITRY KALIUZHNYI-VERBOVETSKYI

We prove that a matrix-valued rational function F which is regular on a domain in \mathbb{C}^{d} defined by the inequalities $\left\|P_{i}(z)\right\|<1, i=1, \ldots, k$, where P_{i} are matrix polynomials, and which has the associated Agler norm strictly less than 1, admits a finite-dimensional contractive realization

$$
F(z)=D+C \mathbf{P}(z)(I-A \mathbf{P}(z))^{-1} B
$$

where $\mathbf{P}(z)$ is a direct sum of blocks $P_{i}(z) \otimes I_{n_{i}}$. As a consequence, we show that any polynomial with no zeros on the domain closure is a factor of $\operatorname{det}(I-$ $K \mathbf{P}(z)$), for some strictly contractive matrix K. In the case where the domain is a matrix unit ball, we show that, in fact, a power of the polynomial admits the above determinantal representation. The latter result is obtained via noncommutative lifting and a theorem on singularities of minimal noncommutative full-structured system realizations.

The talk is based on a current joint project with A. Grinshpan, V. Vinnikov, and H. J. Woerdeman.

