31.1.2014 :תאריך

מרצה: אריאל ידין

שם הקורס: תורת המידה

מספר הקורס: 201.1.0081

שנה: 2014 סמסטר: א מועד: א

משך הבחינה: 3 שעות

אין חומר עזר

בהצלחה!

חלק א: שאלת חובה: הגדרות ומשפטים

חלק זה שווה 25 נקודות

| א | 9 נקי **(א)**

הגדירו מרחב מידה

Define a measure space.

| 8 נקי | 8 נקי

Lebesgue-Radon-Nykodim נסחו את משפט

State the Lebesgue-Radon-Nykodim Theorem.

(ג) | 8 נקי |

What is the space $L^p(X, \mathcal{F}, \mu)$?

חלק ב: הוראות:

בחלק זה עליכם לבחור 3 שאלות מתוך 4 (שלוש בלבד) כתבו בתחילת המחברת באופן ברור על אלו שאלות עניתם כתבו באופן ברור את תשובותיכן, ונמקו כל תשובה באופן מתמטי

שאלה 1: | 25 נקי|

X אוסף של תתי קבוצות של $\mathcal E$

:כלומר: ב- \mathcal{E} , כלומר: מסדרה מסדרה להיות של כל ה- σ -אלגבראות של להיות האיחוד של כל ה-

$$\mathcal{F} = \bigcup \{ \sigma((A_n)_{n=1}^{\infty}) : \forall n , A_n \in \mathcal{E} \}.$$

-אלגברהי. $\mathcal{F}=\sigma(\mathcal{E})$ -אלגברהי. $\mathcal{F}=\sigma(\mathcal{E})$

Let \mathcal{E} be a collection of subsets of X. Let \mathcal{F} be the union of all σ -algebras generated by some sequence in \mathcal{E} ; that is,

$$\mathcal{F} = \bigcup \left\{ \sigma((A_n)_{n=1}^{\infty}) : \forall n, A_n \in \mathcal{E} \right\}.$$

Show that $\mathcal{F} = \sigma(\mathcal{E})$. (Hint: is \mathcal{F} a σ -algebra?)

Solution.

First note that if $A \in \mathcal{F}$, then there exists a sequence $(A_n)_n$ in \mathcal{E} such that $A \in \sigma((A_n)_n) \subset \sigma(\mathcal{E})$. Thus, $\mathcal{F} \subset \sigma(\mathcal{E})$.

So it suffices to show that \mathcal{F} is a σ -algebra.

 $\emptyset \in \mathcal{F}$ is immediate.

If $A \in \mathcal{F}$ then there exists a sequence $(A_n)_n$ in \mathcal{E} such that $A \in \sigma((A_n)_n)$. Thus, $A^c \in \sigma((A_n)_n) \subset \mathcal{F}$. So \mathcal{F} is closed under complements.

Let $(A_n)_n$ be a sequence in \mathcal{F} . So for every n there is a sequence $(E_k^n)_k$ in \mathcal{E} such that $A_n \in \sigma((E_k^n)_k)$. Consider the family $(E_k^n)_{n,k}$. This is a sequence in \mathcal{E} . Let $\mathcal{G} =$

 $\sigma((E_k^n)_{n,k})$. Then by definition, $\mathcal{G} \subset \mathcal{F}$. Also, for every $n, A_n \in \sigma((E_k^n)_k) \subset \mathcal{G}$. Since \mathcal{G} is a σ -algebra, we have that $\bigcup_n A_n \in \mathcal{G} \subset \mathcal{F}$. Since this holds for any sequence $(A_n)_n$ in \mathcal{F} we have show that \mathcal{F} is closed under countable unions, and so \mathcal{F} is a σ -algebra.

. $\int_X f d\mu < \infty$ שאלה 2: נניח (X, \mathcal{F}, μ) מרחב מידה ו-6 פונקציה מדידה מידה מידה מרחב מידה (X, \mathcal{F}, μ) שאלה

. היא
$$\sigma$$
-סופית $\{x: f(x)>0\}$ -הראו

וכן
$$\mu(A) < \infty$$
כך ש- $A \in \mathcal{F}$ קיימת $arepsilon > 0$ וכן

$$\int_A f d\mu > \int_X f d\mu - \varepsilon.$$

Let (X, \mathcal{F}, μ) be a measure space and let $f \geq 0$ be a non-negative measurable function such that $\int_X f d\mu < \infty$.

- (a) | 12 | Show that $\{x : f(x) > 0\}$ is σ -finite.
- (b) | 13 | Show that for every $\varepsilon > 0$ there exists $A \in \mathcal{F}$ such that $\mu(A) < \infty$ and

$$\int_{A} f d\mu > \int_{X} f d\mu - \varepsilon.$$

Solution.

(a) For every n > 0 let $A_n = \{f > n^{-1}\}$. So $\{f > 0\} = \bigcup_n A_n$. And it suffices to show that $\mu(A_n) < \infty$ for all n.

Indeed, for any n, if $x \in A_n$ then nf(x) > 1. So,

$$\mu(A_n) \le n \cdot \int_{A_n} f d\mu \le n \cdot \int f d\mu < \infty.$$

(b) Since by (a) the set $\{f > 0\}$ is σ -finite, we can write $\{f > 0\} = \biguplus_n A_n$ where $(A_n)_n$ are pairwise disjoint measurable sets with $\mu(A_n) < \infty$ for all n. Thus,

$$\int_X f d\mu = \int_{\{f>0\}} f d\mu = \sum_n \int_{A_n} f d\mu.$$

Write $a_n := \int_{A_n} f d\mu$ which is a sequence of non-negative numbers. Since the sum $\sum_n a_n$ converges, for any $\varepsilon > 0$ we may find N large enough so that $\sum_{n>N} a_n < \varepsilon$. Set

$$A := \biguplus_{n=1}^{N} A_n.$$

So

$$\mu(A) = \sum_{n=1}^{N} \mu(A_n) < \infty.$$

Also,

$$A^c \cap \{f > 0\} = \{f > 0\} \setminus A = \biguplus_{n > N} A_n,$$

SO

$$\int_{A^c} f d\mu = \int_{A^c \cap \{f>0\}} f d\mu = \sum_{n>N} \int_{A_n} f d\mu = \sum_{n>N} a_n < \varepsilon.$$

Thus,

$$\int_{Y} f d\mu = \int_{A} f d\mu + \int_{A^{c}} f d\mu < \int_{A} f d\mu + \varepsilon.$$

שאלה 3: | 25 נקי |

. נניח אי-שליליות מדידות של פונקציות סדרה על ($f_n)_n$ נניח נתון מרחב מידה (X,\mathcal{F},μ) מתון מרחב

f-נניח f פונקציה מדידה כך שהסדרה $(f_n)_n$ מתכנסת במידה ל

הראו

$$\int f d\mu \le \liminf_{n \to \infty} \int f_n d\mu.$$

Let (X, \mathcal{F}, μ) be a measure space. Let $(f_n)_n$ be a sequence of non-negative measurable functions, and let f be a measurable function such that $(f_n)_n$ converges to f in **measure**.

Show that

$$\int f d\mu \le \liminf_{n \to \infty} \int f_n d\mu.$$

Solution.

Let $(f_{n_k})_k$ be a subsequence such that

$$\lim_{k \to \infty} \int f_{n_k} d\mu = \liminf_n \int f_n d\mu.$$

So we want to show that $\int f d\mu \leq \lim_{k\to\infty} \int f_{n_k} d\mu$. Since $(f_{n_k})_k$ is a subsequence, we have that for all $\varepsilon > 0$,

$$\lim_{k\to\infty} \mu\left\{|f_{n_k} - f| > \varepsilon\right\} \le \limsup_n \mu\left\{|f_n - f| > \varepsilon\right\} = 0.$$

So $(f_{n_k})_k$ converges in measure to f.

Let $g_k := f_{n_k}$ for all k, which converge in measure to f. By a theorem in class we now have that there is a further subsequence $(g_{k_j})_j$ such that $\lim_{j\to\infty} g_{k_j} = f$ a.e. Since these are all non-negative functions, Fatou's Lemma tells us that

$$\int f d\mu \le \liminf_j \int g_{k_j} d\mu.$$

However, the sequence $(\int g_{k_j} d\mu)_j$ is a subsequence of the converging sequence $(\int f_{n_k} d\mu)_k$ which converges to $\lim \inf_n \int f_n d\mu$. So the limit is

$$\int f d\mu \leq \liminf_j \int g_{k_j} d\mu \leq \lim_{j \to \infty} \int g_{k_j} d\mu = \lim_{k \to \infty} \int f_{n_k} d\mu = \liminf_n \int f_n d\mu.$$

 $\mathcal F$ שאלה 4: נתון מרחב מידה σ -סופי ($X,\mathcal F,\mu$). נניח $\mathcal G\subset\mathcal F$ תת- σ -אלגברה של .

(א) | 15 נקי |

 $A \in \mathcal{G}$ כך שלכל $g \in L^1(X,\mathcal{G}, \nu)$ הראו שקיימת פונקציה

$$\int_{A} f d\mu = \int_{A} g d\nu.$$

| נקי | 10 נקי (**ב)**

 $A \in \mathcal{G}$ המקיימות שלכל קיימות שאם הראו שאם הוא הראו שלכל פונקציות שתי פונקציות הראו הראו שאם היימות שתי

$$\int_{A} g d\nu = \int_{A} f d\mu = \int_{A} g' d\nu,$$

. אז מתקיים: g=g'-כמעט-בכל-מקום.

Let (X, \mathcal{F}, μ) be a σ -finite measure space. Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra of \mathcal{F} . Let $\nu = \mu|_{\mathcal{G}}$.

(a) | 15 |

Suppose that $f \in L^1(X, \mathcal{F}, \mu)$. Show that there exists $g \in L^1(X, \mathcal{G}, \nu)$ such that for every $A \in \mathcal{G}$,

$$\int_{A} f d\mu = \int_{A} g d\nu.$$

(b) | 10 |

Suppose that for $f \in L^1(X, \mathcal{F}, \mu)$ there are two such functions $g, g' \in L^1(X, \mathcal{G}, \nu)$ such that for all $A \in \mathcal{G}$,

$$\int_{A} g d\nu = \int_{A} f d\mu = \int_{A} g' d\nu.$$

Show that $g = g' \nu$ -a.e.

Solution.

(a) Because $f \in L^1$, we know that $|f| < \infty$ μ -a.e., so we may assume that $|f| < \infty$. First assume that f is positive and μ is finite. In this case, consider the function

$$\rho(A) := \int_A f d\mu$$

defined for all $A \in \mathcal{G}$. First of all, we showed in class that this defines a finite positive measure on (X,\mathcal{G}) . Moreover, if $\nu(A)=0$ for some $A \in \mathcal{G}$, since $\nu=\mu|_{\mathcal{G}}$ we have that $\mu(A)=0$, and so $\rho(A)=\int_A f d\mu=0$. Since this holds for all $A \in \mathcal{G}$, the signed measure ρ is absolutely continuous with respect to the measure ν . Since μ is finite, so is ν . Thus, by the Radon-Nykodim Theorem there exists a positive integrable $g=\frac{d\rho}{d\nu} \in L^1(X,\mathcal{G},\nu)$ such that $d\rho=gd\nu$; that is, for all $A \in \mathcal{G}$,

$$\int_{A} f d\mu = \rho(A) = \int_{A} d\rho = \int_{A} g d\nu.$$

Now, if μ is only σ -finite, then write $X = \biguplus_n X_n$ with $\mu(X_n) < \infty$. Consider $\nu_n(A) := \mu(A \cap X_n)$ for all $A \in \mathcal{G}$. So $\nu = \sum_n \nu_n$. Define $\rho_n(A) := \int_{A \cap X_n} f d\mu$. Since

$$\sum_{i=1}^n f \mathbf{1}_{A \cap X_j} \nearrow f \mathbf{1}_A,$$

by monotone convergence we get that

$$\rho(A) := \int_A f d\mu = \sum_n \int_{A \cap X_n} f d\mu = \sum_n \rho_n(A).$$

Also, as above, if $\nu_n(A) = 0$ then $\mu(A \cap X_n) = 0$ and so $\rho_n(A) = 0$. So $\rho_n << \nu_n$. Since ν_n is finite, $g_n := \frac{d\rho_n}{d\nu_n}$ exists and is in $L^1(X, \mathcal{G}, \nu_n)$. Specifically, g_n is \mathcal{G} -measurable. Also, since $\rho_n(A) = 0$ for $A \cap X_n = \emptyset$, we have that g_n can be chosen

such that it is supported on X_n . Define $g = \sum_n g_n$. Since $(X_n)_n$ are disjoint and so g_n have disjoint support, we get that g is always finite and well defined. Also, since $g_n = g_n \mathbf{1}_{X_n}$, by monotone convergence again

$$\int_A g d\nu = \int \sum_n g_n \mathbf{1}_{A \cap X_n} d\nu = \sum_n \int_{A \cap X_n} g_n d\nu_n = \sum_n \rho_n(A) = \rho(A).$$

Specifically,

$$\int_X g d\nu = \rho(X) = \int_X f d\mu < \infty,$$

so $g \in L^1(X, \mathcal{G}, \nu)$.

Now, for the case that f is a general (not necessarily positive) function in L^1 . Write $f = (f_1 - f_2) + i(f_3 - f_4)$ for $f_j \in L^1$ positive. By the previous case, there exist real-valued functions $g_j \in L^1(X, \mathcal{G}, \nu)$ such that for any $A \in \mathcal{G}$ and j = 1, 2, 3, 4 we have

$$\int_{A} f_j d\mu = \int_{A} g_j d\nu.$$

By linearity of the integral we get that for all $A \in \mathcal{G}$,

$$\int_{A} f d\mu = \int_{A} f_{1} d\mu - \int_{A} f_{2} d\mu + i \cdot \int_{A} f_{3} d\mu - i \cdot \int_{A} f_{4} d\mu = \int_{A} (g_{1} - g_{2}) + i(g_{3} - g_{4}) d\nu.$$

So we may choose $g = g_1 - g_2 + i(g_3 - g_4)$ which is a function in $L^1(X, \mathcal{G}, \nu)$.

(b) Suppose that g, g' are as in the question. Then for all $A \in \mathcal{G}$,

$$\int_A g d\nu = \int_A g' d\nu.$$

We have shown in class that this implies that $g = g' \nu$ -a.e.