Define a measure space.

State the Lebesgue-Radon-Nykodim Theorem.

What is the space $L^p(X,\mathcal{F},\mu)$?
Let \mathcal{E} be a collection of subsets of X. Let \mathcal{F} be the union of all σ-algebras generated by some sequence in \mathcal{E}; that is,

$$\mathcal{F} = \bigcup \{ \sigma((A_n)_{n=1}^{\infty}) : \forall n, A_n \in \mathcal{E} \}.$$

Show that $\mathcal{F} = \sigma(\mathcal{E})$. (Hint: is \mathcal{F} a σ-algebra?)

Solution.

First note that if $A \in \mathcal{F}$, then there exists a sequence $(A_n)_n$ in \mathcal{E} such that $A \in \sigma((A_n)_n) \subset \sigma(\mathcal{E})$. Thus, $\mathcal{F} \subset \sigma(\mathcal{E})$.

So it suffices to show that \mathcal{F} is a σ-algebra.

$\emptyset \in \mathcal{F}$ is immediate.

If $A \in \mathcal{F}$ then there exists a sequence $(A_n)_n$ in \mathcal{E} such that $A \in \sigma((A_n)_n)$. Thus, $A^c \in \sigma((A_n)_n) \subset \mathcal{F}$. So \mathcal{F} is closed under complements.

Let $(A_n)_n$ be a sequence in \mathcal{F}. So for every n there is a sequence $(E^1_k)_k$ in \mathcal{E} such that $A_n \in \sigma((E^1_k)_k)$. Consider the family $(E^1_k)_{n,k}$. This is a sequence in \mathcal{E}. Let $\mathcal{G} =$
\[\sigma((E^n_k)_{n,k}). \] Then by definition, \(G \subset F \). Also, for every \(n \), \(A_n \in \sigma((E^n_k)_k) \subset G \). Since \(G \) is a \(\sigma \)-algebra, we have that \(\bigcup_n A_n \in G \subset F \). Since this holds for any sequence \((A_n)_n\) in \(F \) we have show that \(F \) is closed under countable unions, and so \(F \) is a \(\sigma \)-algebra.
Let \((X, \mathcal{F}, \mu)\) be a measure space and let \(f \geq 0\) be a non-negative measurable function such that \(\int_X f \, d\mu < \infty\).

(a) \(\{12\}\)

Show that \(x : f(x) > 0\) is \(\sigma\)-finite.

(b) \(\{13\}\)

Show that for every \(\varepsilon > 0\) there exists \(A \in \mathcal{F}\) such that \(\mu(A) < \infty\) and

\[
\int_A f \, d\mu > \int_X f \, d\mu - \varepsilon.
\]

Solution.

(a) For every \(n > 0\) let \(A_n = \{ f > n^{-1} \}\). So \(\{ f > 0 \} = \bigcup_n A_n\). And it suffices to show that \(\mu(A_n) < \infty\) for all \(n\).

Indeed, for any \(n\), if \(x \in A_n\) then \(nf(x) > 1\). So,

\[
\mu(A_n) \leq n \cdot \int_{A_n} f \, d\mu \leq n \cdot \int f \, d\mu < \infty.
\]
(b) Since by (a) the set \(\{ f > 0 \} \) is \(\sigma \)-finite, we can write \(\{ f > 0 \} = \bigcup_n A_n \) where \((A_n)_n\) are pairwise disjoint measurable sets with \(\mu(A_n) < \infty \) for all \(n \). Thus,

\[
\int_X f \, d\mu = \int_{\{f > 0\}} f \, d\mu = \sum_n \int_{A_n} f \, d\mu.
\]

Write \(a_n := f_{A_n} \, d\mu \) which is a sequence of non-negative numbers. Since the sum \(\sum_n a_n \) converges, for any \(\varepsilon > 0 \) we may find \(N \) large enough so that \(\sum_{n > N} a_n < \varepsilon \).

Set

\[
A := \bigcup_{n=1}^N A_n.
\]

So

\[
\mu(A) = \sum_{n=1}^N \mu(A_n) < \infty.
\]

Also,

\[
A^c \cap \{ f > 0 \} = \{ f > 0 \} \setminus A = \bigcup_{n > N} A_n,
\]

so

\[
\int_{A^c} f \, d\mu = \int_{A^c \cap \{ f > 0 \}} f \, d\mu = \sum_{n > N} \int_{A_n} f \, d\mu = \sum_{n > N} a_n < \varepsilon.
\]

Thus,

\[
\int_X f \, d\mu = \int_A f \, d\mu + \int_{A^c} f \, d\mu < \int_A f \, d\mu + \varepsilon.
\]

Let \((X, \mathcal{F}, \mu)\) be a measure space. Let \((f_n)_n\) be a sequence of non-negative measurable functions, and let \(f \) be a measurable function such that \((f_n)_n\) converges to \(f \) in measure.
Show that
\[\int f d\mu \leq \liminf_{n \to \infty} \int f_n d\mu. \]

Solution.

Let \((f_n)_k\) be a subsequence such that
\[\lim_{k \to \infty} \int f_n d\mu = \liminf_n \int f_n d\mu. \]

So we want to show that \(\int f d\mu \leq \lim_{k \to \infty} \int f_n d\mu \). Since \((f_n)_k\) is a subsequence, we have that for all \(\varepsilon > 0 \),
\[\lim_{k \to \infty} \mu \{|f_n - f| > \varepsilon\} \leq \limsup_n \mu \{|f_n - f| > \varepsilon\} = 0. \]

So \((f_n)_k\) converges in measure to \(f \).

Let \(g_k := f_n \) for all \(k \), which converge in measure to \(f \). By a theorem in class we now have that there is a further subsequence \((g_k)_j\) such that \(\lim_{j \to \infty} g_k = f \) a.e. Since these are all non-negative functions, Fatou’s Lemma tells us that
\[\int f d\mu \leq \liminf_j \int g_k d\mu. \]

However, the sequence \((\int g_k d\mu)_j\) is a subsequence of the converging sequence \((\int f_n d\mu)_k\) which converges to \(\liminf_n \int f_n d\mu \). So the limit is
\[\int f d\mu \leq \liminf_j \int g_k d\mu \leq \lim_{j \to \infty} \int g_k d\mu = \lim_{k \to \infty} \int f_n d\mu = \liminf_n \int f_n d\mu. \]
Let (X, \mathcal{F}, μ) be a σ-finite measure space. Let $\mathcal{G} \subset \mathcal{F}$ be a sub-σ-algebra of \mathcal{F}. Let $\nu = \mu|_{\mathcal{G}}$.

(a) \quad 15 \quad Suppose that $f \in L^1(X, \mathcal{F}, \mu)$. Show that there exists $g \in L^1(X, \mathcal{G}, \nu)$ such that for every $A \in \mathcal{G}$,

$$\int_A f d\mu = \int_A g d\nu.$$

(b) \quad 10 \quad Suppose that for $f \in L^1(X, \mathcal{F}, \mu)$ there are two such functions $g, g' \in L^1(X, \mathcal{G}, \nu)$ such that for all $A \in \mathcal{G}$,

$$\int_A g d\nu = \int_A f d\mu = \int_A g' d\nu.$$

Show that $g = g' \nu$-a.e.
Solution.

(a) Because \(f \in L^1 \), we know that \(|f| < \infty \) \(\mu \)-a.e., so we may assume that \(|f| < \infty \).

First assume that \(f \) is positive and \(\mu \) is finite. In this case, consider the function

\[
\rho(A) := \int_A f \, d\mu
\]

defined for all \(A \in \mathcal{G} \). First of all, we showed in class that this defines a finite positive measure on \((X, \mathcal{G})\). Moreover, if \(\nu(A) = 0 \) for some \(A \in \mathcal{G} \), since \(\nu = \mu|_{\mathcal{G}} \) we have that \(\mu(A) = 0 \), and so \(\rho(A) = \int_A f \, d\mu = 0 \). Since this holds for all \(A \in \mathcal{G} \), the signed measure \(\rho \) is absolutely continuous with respect to the measure \(\nu \). Since \(\mu \) is finite, so is \(\nu \). Thus, by the Radon-Nykodim Theorem there exists a positive integrable \(g = \frac{d\mu}{d\nu} \in L^1(X, \mathcal{G}, \nu) \) such that \(d\rho = g \, d\nu \); that is, for all \(A \in \mathcal{G} \),

\[
\int_A f \, d\mu = \rho(A) = \int_A d\rho = \int_A g \, d\nu.
\]

Now, if \(\mu \) is only \(\sigma \)-finite, then write \(X = \biguplus_n X_n \) with \(\mu(X_n) < \infty \). Consider \(\nu_n(A) := \mu(A \cap X_n) \) for all \(A \in \mathcal{G} \). So \(\nu = \sum_n \nu_n \). Define \(\rho_n(A) := \int_{A \cap X_n} f \, d\mu \).

Since

\[
\sum_{j=1}^n f \mathbf{1}_{A \cap X_j} \nearrow f \mathbf{1}_A,
\]

by monotone convergence we get that

\[
\rho(A) := \int_A f \, d\mu = \sum_n \int_{A \cap X_n} f \, d\mu = \sum_n \rho_n(A).
\]

Also, as above, if \(\nu_n(A) = 0 \) then \(\mu(A \cap X_n) = 0 \) and so \(\rho_n(A) = 0 \). So \(\rho_n << \nu_n \).

Since \(\nu_n \) is finite, \(g_n := \frac{d\mu_n}{d\nu_n} \) exists and is in \(L^1(X, \mathcal{G}, \nu_n) \). Specifically, \(g_n \) is \(\mathcal{G} \)-measurable. Also, since \(\rho_n(A) = 0 \) for \(A \cap X_n = \emptyset \), we have that \(g_n \) can be chosen
such that it is supported on X_n. Define $g = \sum_n g_n$. Since $(X_n)_n$ are disjoint and so g_n have disjoint support, we get that g is always finite and well defined. Also, since $g_n = g_n 1_{X_n}$, by monotone convergence again

$$\int_A g d\nu = \int \sum_n g_n 1_{A \cap X_n} d\nu = \sum_n \int_{A \cap X_n} g_n d\nu_n = \sum_n \rho_n(A) = \rho(A).$$

Specifically,

$$\int_X g d\nu = \rho(X) = \int_X f d\mu < \infty,$$

so $g \in L^1(X, \mathcal{G}, \nu)$.

Now, for the case that f is a general (not necessarily positive) function in L^1. Write $f = (f_1 - f_2) + i(f_3 - f_4)$ for $f_j \in L^1$ positive. By the previous case, there exist real-valued functions $g_j \in L^1(X, \mathcal{G}, \nu)$ such that for any $A \in \mathcal{G}$ and $j = 1, 2, 3, 4$ we have

$$\int_A f_j d\mu = \int_A g_j d\nu.$$

By linearity of the integral we get that for all $A \in \mathcal{G}$,

$$\int_A f d\mu = \int_A f_1 d\mu - \int_A f_2 d\mu + i \cdot \int_A f_3 d\mu - i \cdot \int_A f_4 d\mu = \int_A (g_1 - g_2) + i(g_3 - g_4) d\nu.$$

So we may choose $g = g_1 - g_2 + i(g_3 - g_4)$ which is a function in $L^1(X, \mathcal{G}, \nu)$.

(b) Suppose that g, g' are as in the question. Then for all $A \in \mathcal{G}$,

$$\int_A g d\nu = \int_A g' d\nu.$$

We have shown in class that this implies that $g = g' \nu$-a.e.