Exercise 1. Show that the event that there exists an infinite component is translation invariant.

Solution to Exercise 1. If $\varphi \in \text{Aut}(G)$ then φ maps infinite connected subsets to infinite connected subsets. So if ω is a subgraph containing an infinite component, then $\varphi \omega$ also contains an infinite component. Also, if ω contains only finite components, then $\varphi \omega$ contains only finite components.

Let A be the event that there exists an infinite component. Then the above is just $\omega \in A \iff \varphi \omega \in A$, which implies $A = \varphi A$.

This holds for all $\varphi \in \text{Aut}(G)$ so A is translation invariant. □

Exercise 2. Let G be an infinite transitive graph, and let $E \subseteq E(G), |E| < \infty$ be some finite subset. Then, there exists $\varphi \in \text{Aut}(G)$ such that $\varphi E \cap E = \emptyset$.

Solution to Exercise 2. Fix some vertex $x \in G$. Let $r = \max \{\text{dist}(e,x) : e \in E\}$. Let $R > 3r$ and choose a vertex $y \in G$ such that $\text{dist}(x,y) > R$. Let $\varphi \in \text{Aut}(G)$ be such that $\varphi(x) = y$.

Then, since φ is a graph automorphism, it preserves distances. So for any edge e such that $\text{dist}(e,x) \leq r$, we have that $\text{dist}(\varphi(e), y) \leq r$ and so $\text{dist}(\varphi(e), x) > R - r > r$. Thus, for any $e \in E$ we have that $\varphi(e) \notin E$. That is, $\varphi E \cap E = \emptyset$. □

Exercise 3. Show that $\{x \leftrightarrow \infty\}$ is an increasing event.

Show that $\{x \leftrightarrow y\}$ is an increasing event.

Show that A is increasing if and only if A^c is decreasing.

Show that the union of increasing events is increasing.

Show that the intersection of increasing events is increasing.
Show that \{x \text{ is an isolated vertex} \} is a decreasing event.

Give an example of an event that is not increasing or decreasing.

Solution to Exercise 3. If \(\omega \leq \eta \) and \(\omega \) is such that \(\omega \in \{x \leftrightarrow \infty\} \), then the infinite component of \(x \) in \(\omega \) is open in \(\eta \), so \(\eta \) also contains an infinite component for \(x \).

In general, if \(\omega \leq \eta \), then for every \(z \), the component of \(z \) in \(\omega \) is contained in the component of \(z \) in \(\eta \). So if \(x \leftrightarrow y \) in \(\omega \) then \(x \leftrightarrow y \) in \(\eta \).

Let \(A \) be an increasing event, and let \(B \) be a decreasing event. Let \(\omega \leq \eta \). If \(\eta \in A^c \), then \(\eta \not\in A \), so it cannot be that \(\omega \in A \), which implies that \(\omega \in A^c \). If \(\omega \in B^c \) then \(\omega \not\in B \) so \(\eta \not\in B \) (because \(B \) is decreasing) and so \(\eta \in B^c \). Since this is true for all \(\omega \leq \eta \), we get that \(A^c \) is decreasing and \(B^c \) is increasing.

Suppose that \((A_n)_n\) are increasing events. Let \(A = \bigcup_n A_n \). Suppose that \(\omega \in A \), and that \(\eta \geq \omega \). Then, there exists \(n \) such that \(\omega \in A_n \), and since \(A_n \) is increasing, also \(\eta \in A_n \). So \(\eta \in A \). Thus, \(A \) is increasing.

Let \(B = \bigcap_n A_n \). If \(\eta \geq \omega \) and \(\omega \in B \) then \(\omega \in A_n \) for all \(n \). Since \(A_n \) are all increasing, \(\eta \in A_n \) for all \(n \). So \(\eta \in B \).

The event that \(x \) is an isolated vertex is the event that \(x \not\leftrightarrow y \) for all \(y \sim x \). So the intersection of decreasing events. That is, the event that \(x \) is an isolated vertex is the complement of the union of increasing events, and so a decreasing event.

Consider the event \(A = \{x \leftrightarrow \infty, \deg(x) = 1\} \). Then opening edges adjacent to \(x \) ruins the event, however, closing edges may disconnect \(x \) from infinity, so \(A \) is neither increasing nor decreasing. \(\square \)

Exercise 4. Let \(G \) be a graph. A function \(f : \{0, 1\}^{E(G)} \to \mathbb{R} \) is increasing if \(\omega \leq \eta \) implies \(f(\omega) \leq f(\eta) \).

Show that for an event \(A \), \(1_A \) is increasing if and only if \(A \) is an increasing event.

Solution to Exercise 4. Let \(f = 1_A \).
Assume that A is increasing. For any $\omega \leq \eta$, if $\omega \not\in A$ then $f(\omega) = 0 \leq f(\eta)$. If $\omega \in A$ then since A is increasing $\eta \in A$ and so $f(\omega) = 1 = f(\eta)$. Since this holds for all $\omega \leq \eta$, we get that f is increasing.

Now assume that f is increasing. Let $\omega \leq \eta$, and assume that $\omega \in A$. So $1 = f(\omega) \leq f(\eta)$ which implies that $f(\eta) = 1$ and so $\eta \in A$. Since this holds for all $\omega \leq \eta$, we get that A is increasing. \hfill \square

Exercise 5. Show that $p_c(Z) = 1$.

Solution to Exercise 5. Let $p < 1$. It suffices to show that $\Theta_Z(p) = 0$.

First we investigate the event $\{0 \leftrightarrow \infty\}$. Let A_n be the event that both edges $\{n, n + 1\}$ and $\{-n, -(n + 1)\}$ are closed. So $\mathbb{P}_p[A_n] = (1 - p)^2$. Since for different n these edges are different, we have that $(A_n)_n$ are independent, and also $(A^c_n)_n$ are independent. Thus,

$$
\mathbb{P}_p[\bigcap_n A^c_n] = \lim_{N \to \infty} \mathbb{P}_p[\bigcap_{n=1}^N A^c_n] = \lim_{N \to \infty} \prod_{n=1}^N [1 - (1 - p)^2] = 0
$$

because for $p < 1$ we have $1 - (1 - p)^2 < 1$. Thus,

$$
\mathbb{P}_p[\exists n : A_n] = 1.
$$

That is, \mathbb{P}_p-a.s. there exists n such that both $\{n, n + 1\}$ and $\{-n, -(n + 1)\}$ are closed. This implies that \mathbb{P}_p-a.s. $C(0) \subset [-n, n]$ and so finite. Thus, $\mathbb{P}_p[0 \leftrightarrow \infty] = 0$.

Now, there was nothing special about the vertex 0 in this argument. One could replace 0 with any other vertex. So, we conclude that for any $x \in \mathbb{Z}$, $\mathbb{P}_p[x \leftrightarrow \infty] = 0$. Summing over all x we have,

$$
\Theta_Z(p) = \mathbb{P}_p[\exists x : x \leftrightarrow \infty] \leq \sum_x \mathbb{P}_p[x \leftrightarrow \infty] = 0.
$$

\hfill \square