Probability

Solutions to Mock Exam
Question 1.

- $\mathbb{P}[B \mid A]=\mathbb{P}[B \cap A] / \mathbb{P}[A]$. So we need to calculate $\mathbb{P}[B \cap A]$. The inclusion-exclusion principle gives that

$$
\mathbb{P}[A \cup B]=\mathbb{P}[A]+\mathbb{P}[B]-\mathbb{P}[B \cap A]
$$

so $\mathbb{P}[B \cap A]=\frac{1}{2}+\frac{1}{3}-\frac{3}{4}=\frac{1}{12}$. Thus, $\mathbb{P}[B \mid A]=(1 / 12) /(1 / 2)=1 / 6$.

- Let $X=A \cup B$ and $Y=A \cup C$. So

$$
\mathbb{P}[A \cup B \cup C]=\mathbb{P}[X \cup Y]=\mathbb{P}[X]+\mathbb{P}[Y]-\mathbb{P}[X \cap Y]=\mathbb{P}[A \cup B]+\mathbb{P}[A \cup C]-\mathbb{P}[(A \cup B) \cap(A \cup C)]
$$

Or

$$
\mathbb{P}[(A \cup B) \cap(A \cup C)]=\frac{1}{3}+\frac{1}{4}-\frac{1}{2}=\frac{1}{12}
$$

Note that for any set S we have that

$$
A^{c} \cap(A \cup S)=\left(A^{c} \cap A\right) \cup\left(A^{c} \cap S\right)=A^{c} \cap S,
$$

so

$$
\begin{aligned}
(A \cup B) \cap(A \cup C) & =[(A \cup B) \cap(A \cup C) \cap A] \biguplus\left[(A \cup B) \cap(A \cup C) \cap A^{c}\right] \\
& =A \biguplus\left[\left(A^{c} \cap B\right) \cap\left(A^{c} \cap C\right)\right]=A \biguplus\left(A^{c} \cap B \cap C\right) .
\end{aligned}
$$

Thus,

$$
\frac{1}{12}=\mathbb{P}[(A \cup B) \cap(A \cup C)]=\mathbb{P}[A]+\mathbb{P}\left[C \cap B \cap A^{c}\right]=\frac{1}{12}+\mathbb{P}\left[C \cap B \cap A^{c}\right]
$$

So $\mathbb{P}\left[C \cap B \cap A^{c}\right]=0$.

- First note that since $B \subset A \cup B$ we have that

$$
\mathbb{P}[A \cup B]-\mathbb{P}[B]=\mathbb{P}[(A \cup B) \backslash B]=\mathbb{P}\left[A \cap B^{c}\right]
$$

Next, we have that A, B are independent if and only if A, B^{c} are independent; indeed, since $A=\left(A \cap B^{c}\right) \uplus(A \cap B)$,

$$
\mathbb{P}[A]-\mathbb{P}\left[A \cap B^{c}\right]=\mathbb{P}[A \cap B]
$$

So $\mathbb{P}\left[A \cap B^{c}\right]=\mathbb{P}[A] \mathbb{P}\left[B^{c}\right]$ if and only if $\mathbb{P}[A \cap B]=\mathbb{P}[A] \mathbb{P}[B]$.

Finally, we conclude that A, B are independent, if and only if A, B^{c} are independent, which is if and only if $\mathbb{P}[A \cup B]-\mathbb{P}[B]=\mathbb{P}[A] \mathbb{P}\left[B^{c}\right]$, which is if and only if $\mathbb{P}[A \cup B]=$ $\mathbb{P}[A] \mathbb{P}\left[B^{c}\right]+\mathbb{P}[B]$.

Question 2.

- We use the formula from class for absolutely continuous random variables:

$$
\mathbb{E}[Z]=\int_{0}^{\infty}(\mathbb{P}[Z>t]-\mathbb{P}[Z \leq-t]) d t
$$

Since Z is continuous, and symmetric we get that

$$
\mathbb{P}[Z \leq-t]=\mathbb{P}[Z<-t]=\mathbb{P}[-Z>t]=1-F_{-Z}(t)=1-F_{Z}(t)
$$

So,

$$
\mathbb{E}[Z]=\int_{0}^{\infty}\left(1-F_{Z}(t)-\left(1-F_{Z}(t)\right)\right) d t=0
$$

- Using linearity of expectation we have that

$$
\mathbb{E}\left[X_{n}-Y_{n}\right]=\mathbb{E}\left[X_{n}\right]-\mathbb{E}\left[Y_{n}\right]=0
$$

Since X_{n}, Y_{n} are independent

$$
\operatorname{Var}\left[X_{n}-Y_{n}\right]=\operatorname{Var}\left[X_{n}\right]+\operatorname{Var}\left[-Y_{n}\right]=\operatorname{Var}\left[X_{n}\right]+\operatorname{Var}\left[Y_{n}\right]=\frac{2}{\lambda^{2}}
$$

- For each n let $Z_{n}=X_{n}-Y_{n}$. So $\mathbb{E}\left[Z_{n}\right]=0$ and $\operatorname{Var}\left[Z_{n}\right]=2 \lambda^{-2}$. Also, $\left(Z_{n}\right)_{n}$ is an independent sequence of random variables. The central limit theorem now tells us that

$$
\frac{\lambda}{\sqrt{2 n}} \sum_{k=1}^{n} Z_{k} \xrightarrow{\mathcal{D}} N(0,1) .
$$

That is,

$$
\mathbb{P}\left[\lambda \sum_{k=1}^{n} Z_{k} \leq t \sqrt{2 n}\right] \rightarrow \mathbb{P}[N(0,1) \leq t]
$$

Specifically, for $t=0$ we get that

$$
\mathbb{P}\left[\sum_{k=1}^{n} X_{k} \leq \sum_{k=1}^{n} Y_{k}\right]=\mathbb{P}\left[\sum_{k=1}^{n} Z_{k} \leq 0\right] \rightarrow \mathbb{P}[N(0,1) \leq 0]
$$

So we only have to show that $\mathbb{P}[N(0,1) \leq 0]=1 / 2$. This follows by using a change of variables $u=-s$ so $d s=-d u$ and

$$
\mathbb{P}[N(0,1) \leq 0]=\int_{-\infty}^{0} \frac{1}{\sqrt{2 \pi}} e^{-s^{2} / 2} d s=-\int_{\infty}^{0} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u=\mathbb{P}[N(0,1)>0]
$$

Since $1=\mathbb{P}[N(0,1) \leq 0]+\mathbb{P}[N(0,1)>0]$ we get that $\mathbb{P}[N(0,1) \leq 0]=\mathbb{P}[N(0,1)>0]=$ $1 / 2$.

Question 3.

- Since the range of both X and Y is $\{1,2, \ldots\}$, the range of $X-Y$ is \mathbb{Z}.
- We use the fact that $(\{Y=k\})_{k=1}^{\infty}$ are pairwise disjoint events such that $\mathbb{P}\left[\bigcup_{k=1}^{\infty}\{Y=k\}\right]=$ 1. So for any event A,

$$
\mathbb{P}[A]=\sum_{k=1}^{\infty} \mathbb{P}[A \cap\{Y=k\}]
$$

For $z \geq 0$ we have that

$$
\begin{aligned}
f_{X-Y}(z) & =\mathbb{P}[X=Y+z]=\sum_{k=1}^{\infty} \mathbb{P}[X=k+z, Y=k] \\
& =\sum_{k=1}^{\infty} \mathbb{P}[X=k+z] \mathbb{P}[Y=k]=\sum_{k=1}^{\infty} p(1-p)^{k+z-1} q(1-q)^{k-1} \\
& =p q(1-p)^{z} \sum_{k=1}^{\infty}[(1-p)(1-q)]^{k-1}=\frac{p q}{1-(1-p)(1-q)}(1-p)^{z} .
\end{aligned}
$$

Similarly, for $z<0$ we have

$$
\begin{aligned}
f_{X-Y}(z) & =\sum_{k=1}^{\infty} \mathbb{P}[X=k, Y=k-z]=\sum_{k=1}^{\infty} \mathbb{P}[X=k] \mathbb{P}[Y=k-z] \\
& =\sum_{k=1}^{\infty} p(1-p)^{k-1} q(1-q)^{k-z-1}=\frac{p q}{1-(1-p)(1-q)}(1-q)^{-z}
\end{aligned}
$$

Finally, note that $1-(1-p)(1-q)=p+q-p q$.

Question 4.

- Define $Y=X \mathbf{1}_{\{X \leq m\}}$. Note that if $X(\omega) \leq m$ then $Y(\omega)=X(\omega)$. Thus, $\mathbb{P}[Y=$ $X] \geq \mathbb{P}[X \leq m]=1$. Also, since $m>0$, then for any $\omega \in \Omega$, if $X(\omega) \leq m$, then $Y(\omega)=X(\omega) \leq m$, and if $X(\omega)>m$ then $Y(\omega)=0 \leq m$. Thus, $Y \leq m$.
- For any λ,
$\mathbb{P}[X \leq \lambda]=\mathbb{P}[X \leq \lambda, X=Y]+\mathbb{P}[X \leq \lambda, X \neq Y]=\mathbb{P}[Y \leq \lambda, X=Y]+\mathbb{P}[Y \leq \lambda, X \neq Y]=\mathbb{P}[Y \leq \lambda]$,
where we have used the fact that

$$
\mathbb{P}[X \leq \lambda, X \neq Y]=0=\mathbb{P}[Y \leq \lambda, X \neq Y]
$$

- Since $\mathbb{P}[X-Y=0]=1$ we get that $\mathbb{E}[X-Y]=0$ so $\mathbb{E}[X]=\mathbb{E}[Y]$.
- For any $\lambda<m$ we have

$$
\mathbb{P}[X \leq \lambda]=\mathbb{P}[Y \leq \lambda]=\mathbb{P}[m-Y \geq m-\lambda]
$$

Since $m-Y \geq 0$ we have using Markov's inequality,

$$
\mathbb{P}[X \leq \lambda]=\mathbb{P}[m-Y \geq m-\lambda] \leq \frac{\mathbb{E}[m-Y]}{m-\lambda}=\frac{m-\mathbb{E}[X]}{m-\lambda}
$$

Question 5.

- Calculate:
$\operatorname{Cov}[X+Y, X-Y] \operatorname{Cov}[X, X-Y]+\operatorname{Cov}[Y, X-Y]=\operatorname{Cov}[X, X]-\operatorname{Cov}[X, Y]+\operatorname{Cov}[Y, X]-\operatorname{Cov}[Y, Y]$

$$
=\operatorname{Var}[X]-\operatorname{Var}[Y]=0
$$

- Let X have range $\{1,-1\}$ and density $f_{X}(1)=f_{X}(-1)=1 / 2$. So $\mathbb{E}[X]=0$ and $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]=1$. Let Z be independent of X have range $\{-1,1\}$ and density $f_{Z}(1)=f_{X}(-1)=1 / 2$. Let $Y=X Z$. Since X, Z are independent we have that $\mathbb{E}[Y]=\mathbb{E}[X Z]=\mathbb{E}[X] \mathbb{E}[Z]=0$ and $\operatorname{Var}[Y]=\mathbb{E}\left[Y^{2}\right]=\mathbb{E}\left[X^{2} Z^{2}\right]=1$.

$$
\text { Now } X+Y=X(1+Z) \text { and } X-Y=X(1-Z) . \text { Note that }
$$

$\mathbb{P}[X+Y=2, X-Y=2]=0 \neq \frac{1}{4} \cdot \frac{1}{4}=\mathbb{P}[X=1, Z=1] \cdot \mathbb{P}[X=1, Z=-1]=\mathbb{P}[X+Y=2] \cdot \mathbb{P}[X-Y=2]$.
So $X+Y, X-Y$ are not independent.

