1.1. Functions of Random Variables

Exercise 1.1. Let $U \sim U[0,1]$. Show that $X=\frac{1}{1-U}$ is absolutely continuous, and calculate the density of X.

Solution (exercise 1). For any positive t,

$$
F_{X}(t)=\mathbb{P}[X \leq t]=\mathbb{P}[U \leq 1-1 / t]= \begin{cases}0 & t<1 \\ 1-1 / t & t \geq 1\end{cases}
$$

If $t<0$ then

$$
F_{X}(t)=\mathbb{P}[X \leq t]=0
$$

We can take

$$
f_{X}(s)= \begin{cases}0 & s<1 \\ s^{-2} & s \geq 1\end{cases}
$$

Exercise 1.2. Let $U \sim U[0,1]$. Let $X=\sin (\pi U)$. Calculate $\mathbb{P}[X \leq 1 / 2]$.
Solution (exercise 2). The solution to $\sin (\pi u)=1 / 2$ is $\pi u=\pi / 6$ (use equilateral triangle cut in half). sin is monotone increasing up to $\pi / 2$ and decreasing from $\pi / 2$ to π. Thus, $\sin (\pi u) \leq 1 / 2$ if and only if $\pi u \in[0, \pi / 6] \cup[\pi-\pi / 6, \pi]$.

So,

$$
\mathbb{P}[X \leq 1 / 2]=\mathbb{P}[U \in[0,1 / 6] \uplus U \in[5 / 6,1]]=\frac{1}{6}+\frac{1}{6}=\frac{1}{3} .
$$

Exercise 1.3. X is absolutely continuous with density

$$
f_{X}(t)= \begin{cases}0 & t \notin[0,5] \\ c t^{2} & 0<t<5\end{cases}
$$

Find c. Find the distribution function of X, F_{X}. Find t such that $\mathbb{P}[X<t]=1 / 3$.
Exercise 1.4. Let $X \sim \operatorname{Exp}(\lambda)$. Let $Y=\lfloor X\rfloor$. Show that Y is discrete. What is the probability density function of Y ?

Show that $Y \sim \operatorname{Geo}(p)$. What is p ?

Solution (exercise 4). It is simple that $\mathbb{P}[Y \in \mathbb{N}]=1$. So Y is discrete.
For any $n \in \mathbb{N}$,

$$
\mathbb{P}[Y=n]=\mathbb{P}[n \leq X<n+1]=\int_{n}^{n+1} \lambda e^{-\lambda s} d s=e^{-\lambda n}-e^{-\lambda(n+1)}=e^{-\lambda n} \cdot\left(1-e^{-\lambda}\right) .
$$

So $p=1-e^{-\lambda}$.

Exercise 1.5. Let $X \sim N(0, \sigma)$. What is $\mathbb{P}[X<0]$? What is $\mathbb{P}[X>0]$?
Let $Y=\operatorname{sign}(X)=\mathbf{1}_{\{X>0\}}-\mathbf{1}_{\{X<0\}}$. Show that Y is discrete and compute the probability density function of Y. Let $Z=\frac{1+Y}{2}$. What is the distribution of Z ?

Solution (exercise 5). Y is ± 1 with probability $1 / 2$ each, so $Z \sim \operatorname{Ber}(1 / 2)$.
Indeed,

$$
\mathbb{P}[X>0]+\mathbb{P}[X<0]=1-\mathbb{P}[X=0]=1
$$

and since f_{X} is symmetric around 0 ,

$$
\mathbb{P}[X>0]=\int_{0}^{\infty} f_{X}(t) d t=\int_{0}^{\infty} f_{X}(-t) d t=\int_{-\infty}^{0} f_{X}(t) d t=\mathbb{P}[X<0] .
$$

Exercise 1.6. Let $X \sim N(20,5)$. The price of a stock has the distribution of $X^{+}=$ $X \vee 0=\max \{X, 0\}$. If I bought the stock at 17 what is the distribution of my profit?

Is Y discrete? Is Y continuous?

Solution (exercise 6). If Y is the profit, then $Y=X^{+}-17$. So

$$
\mathbb{P}[Y \leq t]=\mathbb{P}\left[X^{+} \leq t+17\right]
$$

if $t \leq 17$ this is 0 . For $t>-17$,

$$
\begin{aligned}
\mathbb{P}[Y \leq t] & =\mathbb{P}\left[X^{+} \leq t+17\right]=\mathbb{P}[X \leq 0]+\mathbb{P}[0<X \leq t+17] \\
& =\mathbb{P}[X \leq t+17]=\int_{-\infty}^{t+17} f_{X}(s) d s=\int_{-\infty}^{t} f_{X}(s+17) d s .
\end{aligned}
$$

Y is not continuous because $\mathbb{P}[Y=-17]=\mathbb{P}\left[X^{+}=0\right]=\mathbb{P}[X \leq 0]>0$.
Y is not discrete because if R is the (countable) range of Y, then

$$
1=\mathbb{P}[Y \in R]=\mathbb{P}\left[X^{+} \in R+17\right]=\mathbb{P}\left[X \in(R+17)^{+}\right] \leq \sum_{r \in R} \mathbb{P}\left[X=(r+17)^{+}\right]=0,
$$

where $(R+17)^{+}=\{(r+17) \vee 0: r \in R\}$.

Exercise 1.7. Let $X \sim U[-1,1]$. Show that $Y=e^{X}$ is absolutely continuous and compute the density of Y.

Solution (exercise 7). For any $u \in[-1,1]$, $e^{u} \leq t$ if and only if $t \geq e^{-1}$ and $u \leq \log t$. So if $t<e^{-1}$ then $\mathbb{P}[Y \leq t]=0$. If $e^{-1} \leq t \leq e$ then

$$
\mathbb{P}[Y \leq t]=\mathbb{P}[X \leq \log t]=\frac{1+\log t}{2}
$$

If $t>e$ then $\mathbb{P}[Y \leq t]=1$. So

$$
F_{Y}(t)= \begin{cases}0 & t<e^{-1} \\ \frac{1+\log t}{2} & t \in\left[e^{-1}, e\right] \\ 1 & t>e\end{cases}
$$

If we take

$$
f_{Y}(s)= \begin{cases}\frac{1}{2 s} & s \in\left[e^{-1}, e\right] \\ 0 & s \notin\left[e^{-1}, e\right]\end{cases}
$$

then

$$
F_{Y}(t)=\int_{-\infty}^{t} f_{Y}(s) d s
$$

Exercise 1.8. Let X be absolutely continuous with density

$$
f_{X}(t)=\left\{\begin{array}{lc}
\frac{1}{2} \cos t & t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
0 & \text { otherwise }
\end{array}\right.
$$

Show that $Y=\sin X$ is absolutely continuous, and calculate the density of Y.

Solution (exercise 8). Since $\mathbb{P}\left[X \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right]=1$ we have that $\mathbb{P}[Y \in[-1,1]]=1$. Now, for any $t \in[-1,1]$,

$$
\begin{aligned}
F_{Y}(t) & =\mathbb{P}[Y \leq t]=\mathbb{P}[X \leq \arcsin t]=\int_{-\infty}^{\arcsin t} f_{X}(s) d s \\
& =\int_{-\pi / 2}^{\arcsin t} \frac{1}{2} \cos s d s=\frac{1}{2} \cdot(\sin (\arcsin t)-\sin (-\pi / 2))=\frac{t+1}{2}
\end{aligned}
$$

So for $f_{Y}(s)=\frac{1}{2} \cdot \mathbf{1}_{[-1,1]}$, we have that f_{Y} is the density of Y, which is the same as saying that $Y \sim U[-1,1]$.

