Introduction to Probability

Exer	cise	sheet	-
LIAUI	CIDC.	SHCCU	

This exercise sheet is to review some facts from set theory.

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \operatorname{Recall \ the \ definitions:} \\ \hline & \text{For } A, B \subset \Omega: \end{array} \end{array}$ $\begin{array}{l} For \ A, B \subset \Omega: \end{array}$ $A \cup B = \{ \omega \ : \ \omega \in A \ \text{or} \ \omega \in B \} \quad \text{and} \quad A \cap B = \{ \omega \ : \ \omega \in A \ \text{and} \ \omega \in B \} . \end{array}$ $\begin{array}{l} A \setminus B = \{ \omega \ : \ \omega \in A, \omega \notin B \} \quad \text{and} \quad A^c = \Omega \setminus A. \end{array}$ $\begin{array}{l} A \triangle B = \{ (A \setminus B) \cup (B \setminus A). \end{array}$ $A \times B = \{ (a,b) \ : \ a \in A, b \in B \} . \end{array}$

Exercise 1. Prove or give a counter-example:

- (a) $A \setminus B \subset A$.
- (b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- (c) $A \cup B = A \cup (B \setminus A)$.
- (d) $A \setminus (B \setminus C) = (A \setminus B) \setminus C$.
- (e) $(A \setminus B) \setminus C = (A \setminus B) \setminus (B \setminus C).$
- (f) $A \setminus (B \setminus C) = (A \setminus B) \cup (B \cap C).$
- (g) $(A \cup B) \cap A = (A \cap B) \cup A$.
- (h) $A \triangle B = (A \cap B^c) \cup (B \cap A^c).$

Exercise 2. Show the following:

- (a) $(A \setminus B) \cup B = A$ if and only if $B \subseteq A$.
- (b) $A \cup B = A \cap B$ if and only if A = B.
- (c) $(A \cap B) \cup C = A \cap (B \cup C)$ if and only if $C \subseteq A$.
- (d) $A \triangle B = (A \cup B) \setminus (A \cap B)$.
- (e) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.

Exercise 3 (De-Morgan). Show that:

- (a) $\left(\bigcup_n A_n\right)^c = \bigcap_n A_n^c$.
- (b) $\left(\bigcap_{n} A_{n}\right)^{c} = \bigcup_{n} A_{n}^{c}$.

Exercise 4. For any $k \ge 1$ define $B_k = \bigcup_{n=1}^k A_n$. Define $C_k = A_k \setminus B_{k-1}$, where $B_0 = \emptyset$.

Show that

- (a) (C_k) are mutually disjoint; *i.e.* for any $n \neq m$, $C_n \cap C_m = \emptyset$.
- (b) For any n,

$$\bigcup_{k=1}^{n} C_k = \bigcup_{k=1}^{n} A_k.$$

(c) $\bigcup_n C_n = \bigcup_n A_n$.

Exercise 5. Assume that $B \subseteq A \subseteq C$. Let X be a set such that $A \cap X = B$ and $A \cup X = C$. Prove that $X = B \cup (C \setminus A)$.

Exercise 6. Let A be a finite set of size |A| = n. Let $B, C \subseteq A$ be non-empty subsets such that $B \cap C = \emptyset$ and $B \cup C = A$. What is the maximal size of $B \times C$? What is the minimal size?

Exercise 7. Let $A_j \subset \Omega_j$ for j = 1, 2, ..., n and let $\Omega = \Omega_1 \times \cdots \times \Omega_n$. For any j, let $B_j = \Omega_1 \times \cdots \times \Omega_{j-1} \times A_j^c \times \Omega_{j+1} \times \cdots \times \Omega_n$. Show that

$$(A_1 \times A_2 \times \cdots \times A_n)^c = B_1 \cup B_2 \cup \cdots \cup B_n.$$

Exercise 8. Consider Ω_j for j = 1, 2, ..., n and let $\Omega = \Omega_1 \times \cdots \times \Omega_n$. For every j, let $(A_m^{(j)})_{m \in \mathbb{N}}$ be a collection of subsets of Ω_j . For every m, let $B_m = A_m^{(1)} \times \cdots \times A_m^{(n)}$. Show that

$$\bigcap_{m \in \mathbb{N}} B_m = \left(\bigcap_m A_m^{(1)}\right) \times \dots \times \left(\bigcap_m A_m^{(n)}\right).$$

Exercise 9. Let $0 < \alpha < 1$. Prove that

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}.$$

Hint: Consider the finite sum $\sum_{n=0}^{N} \alpha^n$ and multiply it by $(1-\alpha)$.