Introduction to Probability

Exercise sheet 1
This exercise sheet is to review some facts from set theory.
Recall the definitions:
For $A, B \subset \Omega$:

$$
\begin{gathered}
A \cup B=\{\omega: \omega \in A \text { or } \omega \in B\} \quad \text { and } \quad A \cap B=\{\omega: \omega \in A \text { and } \omega \in B\} . \\
A \backslash B=\{\omega: \omega \in A, \omega \notin B\} \quad \text { and } \quad A^{c}=\Omega \backslash A . \\
A \triangle B=(A \backslash B) \cup(B \backslash A) . \\
A \times B=\{(a, b): a \in A, b \in B\} .
\end{gathered}
$$

Exercise 1. Prove or give a counter-example:
(a) $A \backslash B \subset A$.
(b) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
(c) $A \cup B=A \cup(B \backslash A)$.
(d) $A \backslash(B \backslash C)=(A \backslash B) \backslash C$.
(e) $(A \backslash B) \backslash C=(A \backslash B) \backslash(B \backslash C)$.
(f) $A \backslash(B \backslash C)=(A \backslash B) \cup(B \cap C)$.
(g) $(A \cup B) \cap A=(A \cap B) \cup A$.
(h) $A \triangle B=\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)$.

Exercise 2. Show the following:
(a) $(A \backslash B) \cup B=A$ if and only if $B \subseteq A$.
(b) $A \cup B=A \cap B$ if and only if $A=B$.
(c) $(A \cap B) \cup C=A \cap(B \cup C)$ if and only if $C \subseteq A$.
(d) $A \triangle B=(A \cup B) \backslash(A \cap B)$.
(e) $A \cap(B \triangle C)=(A \cap B) \triangle(A \cap C)$.

Exercise 3 (De-Morgan). Show that:
(a) $\left(\bigcup_{n} A_{n}\right)^{c}=\bigcap_{n} A_{n}^{c}$.
(b) $\left(\bigcap_{n} A_{n}\right)^{c}=\bigcup_{n} A_{n}^{c}$.

Exercise 4. For any $k \geq 1$ define $B_{k}=\bigcup_{n=1}^{k} A_{n}$. Define $C_{k}=A_{k} \backslash B_{k-1}$, where $B_{0}=\emptyset$.

Show that
(a) $\left(C_{k}\right)$ are mutually disjoint; i.e. for any $n \neq m, C_{n} \cap C_{m}=\emptyset$.
(b) For any n,

$$
\bigcup_{k=1}^{n} C_{k}=\bigcup_{k=1}^{n} A_{k}
$$

(c) $\bigcup_{n} C_{n}=\bigcup_{n} A_{n}$.

Exercise 5. Assume that $B \subseteq A \subseteq C$. Let X be a set such that $A \cap X=B$ and $A \cup X=C$. Prove that $X=B \cup(C \backslash A)$.

Exercise 6. Let A be a finite set of size $|A|=n$. Let $B, C \subseteq A$ be non-empty subsets such that $B \cap C=\emptyset$ and $B \cup C=A$. What is the maximal size of $B \times C$? What is the minimal size?

Exercise 7. Let $A_{j} \subset \Omega_{j}$ for $j=1,2, \ldots, n$ and let $\Omega=\Omega_{1} \times \cdots \times \Omega_{n}$. For any j, let $B_{j}=\Omega_{1} \times \cdots \times \Omega_{j-1} \times A_{j}^{c} \times \Omega_{j+1} \times \cdots \times \Omega_{n}$. Show that

$$
\left(A_{1} \times A_{2} \times \cdots \times A_{n}\right)^{c}=B_{1} \cup B_{2} \cup \cdots \cup B_{n}
$$

Exercise 8. Consider Ω_{j} for $j=1,2, \ldots, n$ and let $\Omega=\Omega_{1} \times \cdots \times \Omega_{n}$. For every j, let $\left(A_{m}^{(j)}\right)_{m \in \mathbb{N}}$ be a collection of subsets of Ω_{j}. For every m, let $B_{m}=A_{m}^{(1)} \times \cdots \times A_{m}^{(n)}$. Show that

$$
\bigcap_{m \in \mathbb{N}} B_{m}=\left(\bigcap_{m} A_{m}^{(1)}\right) \times \cdots \times\left(\bigcap_{m} A_{m}^{(n)}\right) .
$$

Exercise 9. Let $0<\alpha<1$. Prove that

$$
\sum_{n=0}^{\infty} \alpha^{n}=\frac{1}{1-\alpha}
$$

Hint: Consider the finite sum $\sum_{n=0}^{N} \alpha^{n}$ and multiply it by $(1-\alpha)$.

