Introduction to Probability

Exercise sheet 3+ (additional exercises)

Exercise 1. Let X be a discrete random variable with density

$$
f_{X}(k)=\frac{10-k}{40} \quad k=0,1,2,3,4
$$

and $f_{X}(r)=0$ otherwise.
Show that f_{X} is indeed a density. What is the distribution function F_{X} ? Calculate $\mathbb{P}[1 \leq$ $X \leq 3]$.

Exercise 2. Let X be a random variable with distribution function

$$
F_{X}(t)=\left\{\begin{array}{cc}
0 & t<0 \\
\frac{1}{8} & 0 \leq t<1 \\
\frac{3}{8} & 1 \leq t<2 \\
\frac{3}{4} & 2 \leq t<3 \\
1 & t \geq 3
\end{array}\right.
$$

Show that X is discrete.
What is the density of X ?

Exercise 3. There are 3 chemists and 5 biologists. Out of these, 5 people are chosen, all choices equally likely. Let X be the number of chemists chosen. What is the density of X ?

Exercise 4. The number of calls to the call center in an hour has Poi(20) distribution. What is the probability that there are no calls during the hour?

Exercise 5. X is an absolutely continuous random variable with density

$$
f_{X}(s)= \begin{cases}c s^{2} & 0<s<5 \\ 0 & \text { otherwise }\end{cases}
$$

What is c ? What is the distribution function of X ? Find t such that $\mathbb{P}[X<t]=1 / 3$.

Exercise 6. Let $X \sim \operatorname{Exp}(5)$. Find t so that $\mathbb{P}[X>t]=e^{-1}$.

Exercise 7. Let $X \sim U[0,2 \pi]$. Calculate $\mathbb{P}[\cos X>0]$.

Exercise 8. Let $X \sim \operatorname{Exp}(\lambda)$. Calculate $\mathbb{P}[\sin X>0]$.

Exercise 9. Let $X \sim \operatorname{Exp}(\lambda)$. Let $Y=\lfloor X\rfloor$ (the largest integer that is at most X). Show that Y is discrete. What is the density of Y ?

Exercise 10. Let X be an absolutely continuous random variable with density $f_{X}(t)=2 t e^{-t^{2}}$ for $t \geq 0$ and $f_{X}(t)=0$ for $t<0$. Let $Y=X^{2}$. Show that Y is an absolutely continuous random variable. What is the density?

Exercise 11. Let $X \sim N(0,1)$. Let

$$
Y=\operatorname{sign}(X)= \begin{cases}1 & X>0 \\ 0 & X=0 \\ -1 & X<0\end{cases}
$$

What is the distribution of Y ? Show that Y is discrete and compute the density of Y.
Let $Z=(Y+1) / 2$. What is the distribution of Z ?

