Introduction to Probability

Exercise sheet 6

Exercise 1. Let $\left(A_{k}\right)_{k}$ be a sequence of events (not necessarily disjoint). Let

$$
X=\sum_{k=0}^{\infty} a_{k} \mathbf{1}_{A_{k}}
$$

for positive numbers $a_{k}>0$.
Show that

$$
\mathbb{E}[X]=\sum_{k=0}^{\infty} a_{k} \mathbb{P}\left[A_{k}\right]
$$

Exercise 2. Let X be a discrete random variable, with range \mathbb{Z} such that $\mathbb{E}[X]$ exists. Show that

$$
\mathbb{E}[X]=\sum_{k=0}^{\infty}(\mathbb{P}[X>k]-\mathbb{P}[X<-k])
$$

Exercise 3. Show that if X, Y are independent absolutely continuous random variables, then for any two measurable functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$

$$
\mathbb{E}[g(X) h(Y)]=\mathbb{E}[g(X)] \cdot \mathbb{E}[h(Y)]
$$

Exercise 4. Let $X \sim N(0, \sigma)$.
(a) Let $G(t)=-e^{-t^{2} / 2}$ and $g(t)=t e^{-t^{2} / 2}$. Show that $G^{\prime}(t)=g(t)$.
(b) Use integration by parts to show that for all $n \geq 2$,

$$
\mathbb{E}\left[X^{n}\right]=\sigma^{2}(n-1) \mathbb{E}\left[X^{n-2}\right]
$$

Conclude that for even $n \geq 2$,

$$
\mathbb{E}\left[X^{n}\right]=\sigma^{n} \prod_{k=1}^{n / 2}(2 k-1)
$$

(c) Show that $-X \sim N(0, \sigma)$.
(d) Show that $\left|\mathbb{E}\left[X^{n}\right]\right|<\infty$ and $\mathbb{E}\left[(-X)^{n}\right]=\mathbb{E}\left[X^{n}\right]$, for any $n \in \mathbb{N}$.
(e) Deduce that if n is odd, then $\mathbb{E}\left[X^{n}\right]=0$.
(f) What is $\mathbb{E}\left[X^{4}\right]$? $\mathbb{E}\left[X^{6}\right]$?

Exercise 5. Let $X \sim N(100,10)$. Calculate $\mathbb{E}\left[(X-100)^{8}\right]$. Calculate $\mathbb{E}\left[(X-50)^{2}\right]$.

Exercise 6. Let $X \geq 0$ be a non-negative random variable. In this exercise we will show that

$$
\begin{equation*}
\mathbb{E}[X]=0 \quad \text { if and only if } \quad \mathbb{P}[X=0]=1 \tag{1}
\end{equation*}
$$

- First assume that X is discrete, and prove (11.
- Now let X be a general non-negative random variable. Consider $X_{n}=2^{-n}\left\lfloor 2^{n} X\right\rfloor$. $X_{n} \nearrow X$ (why?). Show that $\mathbb{E}\left[X_{n}\right]=0$ for all n.
- Deduce that for all $n, \mathbb{P}\left[X_{n}=0\right]=1$.
- Show that

$$
\{X>0\}=\lim _{n \rightarrow \infty}\left\{X_{n}>0\right\}
$$

Deduce that $\mathbb{P}[X>0]=0$, and so $\mathbb{P}[X=0]=1$.

- For the "if" part: assume that $\mathbb{P}[X=0]=1$. Show that $\mathbb{E}[X]=0$ by splitting into the discrete case, and approximating.
- Conclude that $\operatorname{Var}[X]=0$ if and only if $\mathbb{P}[X=\mathbb{E}[X]]=1$.

Exercise 7. Let X, Y be random variables with finite second moment. Show that if $\operatorname{Var}[X]=0$ then $\operatorname{Cov}[X, Y]=0$. Show that if $\mathbb{E}\left[X^{2}\right]=0$ then $\mathbb{E}[X Y]=0$.

Exercise 8. Let X_{1}, \ldots, X_{n} be random variables with finite second moment. Show that

$$
\operatorname{Var}\left[X_{1}+\cdots+X_{n}\right]=\sum_{k=1}^{n} \operatorname{Var}\left[X_{k}\right]+2 \sum_{j<k} \operatorname{Cov}\left[X_{j}, X_{k}\right]
$$

Deduce the Pythagorian Theorem: If X_{1}, \ldots, X_{n} are all pairwise uncorrelated, then

$$
\operatorname{Var}\left[X_{1}+\cdots+X_{n}\right]=\sum_{k=1}^{n} \operatorname{Var}\left[X_{k}\right]
$$

Exercise 9. Prove a generalization of the arithmetic-geometric mean inequality:
Let p_{1}, \ldots, p_{n} be numbers in $[0,1]$ such that $\sum_{k=1}^{n} p_{k}=1$. Let a_{1}, \ldots, a_{n} be any positive numbers. Then,

$$
\sum_{k=1}^{n} p_{k} a_{k} \geq \prod_{k=1}^{n} a_{k}^{p_{k}}
$$

Hint: Let X be a discrete random variable with density $f_{X}\left(a_{k}\right)=p_{k}$. Use Jensen's inequality on $-\log \mathbb{E}[X]$.

