Probability

Question 1.

- For every $\omega \in \Omega$ we have that

$$
\inf _{n} Z_{n}(\omega) \leq t \Longleftrightarrow \forall m>0 \exists n: Z_{n}(\omega) \leq t+\frac{1}{m}
$$

Thus,
$\left\{\inf _{n} Z_{n} \leq t\right\}=\left\{\omega: \inf _{n} Z_{n}(\omega) \leq t\right\}=\bigcap_{m} \bigcup_{n}\left\{\omega: Z_{n}(\omega) \leq t+m^{-1}\right\}=\bigcap_{m} \bigcup_{n}\left\{Z_{n} \leq t+m^{-1}\right\}$.
Since Z_{n} are all random variables, $\left\{Z_{n} \leq t+m^{-1}\right\}$ are events for all t, m, n, so $\left\{\inf _{n} Z_{n} \leq t\right\}$ is also an event for any t. Thus, $\inf _{n} Z_{n}$ is a measurable function, that is a random variable.

In a similar way,

$$
\left\{\sup _{n} Z_{n} \leq t\right\}=\left\{\omega: \forall n Z_{n}(\omega) \leq t\right\}=\bigcap_{n}\left\{Z_{n} \leq t\right\}
$$

so $\sup _{n} Z_{n}$ is a random variable as well.

- For every $n, Y_{n}=\inf _{k \geq n} X_{k}$ is a random variable by the previous bullet. Moreover, for any $\omega \in \Omega$, and any n,

$$
Y_{n}(\omega)=\inf _{k \geq n} X_{k}(\omega) \leq \inf _{k \geq n+1} X_{k}(\omega)=Y_{n+1}(\omega)
$$

since the second infimum is over a smaller set. Thus $\left(Y_{n}\right)_{n}$ is a monotone non-decreasing sequence.

This now implies that $Y=\lim _{n} Y_{n}=\sup _{n} Y_{n}$. This implies that Y is also a random variable by the first bullet.

- Since $X_{k} \geq 0$ for all k, we have that $Y_{n} \geq 0$ for all n. Since $\left(Y_{n}\right)_{n}$ is a monotone nondecreasing sequence of non-negative random variables, we get by monotone convergence that $\mathbb{E}\left[Y_{n}\right] \nearrow \mathbb{E}[Y]$.
- For any $\omega \in \Omega$ and any $k \geq n$ we have that

$$
Y_{n}(\omega)=\inf _{m \geq n} X_{m}(\omega) \leq X_{k}(\omega)
$$

Thus, $Y_{n} \leq X_{k}$ and so $\mathbb{E}\left[Y_{n}\right] \leq \mathbb{E}\left[X_{k}\right]$.

Since this holds for all $k \geq n$ we get that $\mathbb{E}\left[Y_{n}\right] \leq \inf _{k \geq n} \mathbb{E}\left[X_{k}\right]$.
The definition of lim inf now gives that

$$
\mathbb{E}\left[\liminf _{n} X_{n}\right]=\mathbb{E}[Y]=\lim _{n} \mathbb{E}\left[Y_{n}\right] \leq \lim _{n} \inf _{k \geq n} \mathbb{E}\left[X_{k}\right]=\liminf _{n} \mathbb{E}\left[X_{n}\right]
$$

Question 2. Let X_{k} denote that change in height at the k-th step. Note that $\mathbb{P}\left[X_{k}=1\right]=p$ and $\mathbb{P}\left[X_{k}=-1\right]=1-p$.

- $\mathbb{E}\left[X_{k}\right]=p-(1-p)=2 p-1 . \mathbb{E}\left[X_{k}^{2}\right]=p+(1-p)=1$. So $\operatorname{Var}[X]=1-(2 p-1)^{2}=4 p(1-p)$.
- $S_{n}=\sum_{k=1}^{n} X_{k}$, and all A_{k} are independent. So $\mathbb{E}\left[S_{n}\right]=n(2 p-1)$ (linearity) and $\operatorname{Var}\left[S_{n}\right]=4 n p(1-p)$ (independence, Pythagoras' Theorem).
- Note

$$
\mathbb{P}\left[S_{n} \leq \frac{n}{4}\right]=\mathbb{P}\left[\frac{S_{n}-n(2 p-1)}{\sqrt{4 n p(1-p)}} \leq \frac{\frac{n}{4}-n(2 p-1)}{\sqrt{4 n p(1-p)}}\right]
$$

If $\frac{1}{4}=2 p-1$, that is $p=5 / 8$, then using the central limit theorem we have that

$$
\mathbb{P}\left[S_{n} \leq \frac{n}{4}\right]=\mathbb{P}\left[\frac{S_{n}-n(2 p-1)}{\sqrt{4 n p(1-p)}} \leq 0\right] \rightarrow \mathbb{P}[N(0,1) \leq 0]
$$

So we only need to prove that $\mathbb{P}[N(0,1) \leq 0]=1 / 2$. This follows by using a change of variables $u=-s$ so $d s=-d u$ and

$$
\mathbb{P}[N(0,1) \leq 0]=\int_{-\infty}^{0} \frac{1}{\sqrt{2 \pi}} e^{-s^{2} / 2} d s=-\int_{\infty}^{0} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u=\mathbb{P}[N(0,1)>0]
$$

and since $1=\mathbb{P}[N(0,1) \leq 0]+\mathbb{P}[N(0,1)>0]$ we get that $\mathbb{P}[N(0,1) \leq 0]=\mathbb{P}[N(0,1)>$ $0]=1 / 2$.

Question 3.

- For $0 \leq j \leq n$ we have that

$$
\begin{aligned}
f_{X}(j) & =\sum_{k=j}^{m+j} f_{X, Y}(j, k)=\binom{n}{j} p^{j}(1-p)^{n-j} \cdot \sum_{k=j}^{m+j}\binom{m}{k-j} p^{k-j}(1-p)^{m-(k-j)} \\
& =\binom{n}{j} p^{j}(1-p)^{n-j} \cdot \sum_{r=0}^{m}\binom{m}{r} p^{r}(1-p)^{m-r}=\binom{n}{j} p^{j}(1-p)^{n-j} .
\end{aligned}
$$

That is, $X \sim \operatorname{Bin}(n, p)$.

- The range of $Y-X$ is

$$
\{k-j: 0 \leq j \leq n, j \leq k \leq m+j\}=\{0 \leq r \leq m\}
$$

The density is (for $0 \leq r \leq m$):

$$
\begin{aligned}
f_{Y-X}(r) & =\mathbb{P}[Y-X=r]=\sum_{j=0}^{n} \mathbb{P}[Y-X=r, X=j]=\sum_{j=0}^{n} f_{X, Y}(j, r+j) \\
& =\sum_{j=0}^{n}\binom{n}{j} p^{j}(1-p)^{n-j} \cdot\binom{m}{r} p^{r}(1-p)^{m-r}=\binom{m}{r} p^{r}(1-p)^{m-r} .
\end{aligned}
$$

So $Y-X \sim \operatorname{Bin}(m, p)$.

- $X, Y-X$ are independent, since for all $0 \leq j \leq n, 0 \leq r \leq m$,

$$
\mathbb{P}[X=j, Y-X=r]=f_{X, Y}(j, r+j)=\binom{n}{j} p^{j}(1-p)^{n-j} \cdot\binom{m}{r} p^{r}(1-p)^{m-r}=\mathbb{P}[X=j] \cdot \mathbb{P}[Y-X=r] .
$$

- $\mathbb{E}[X]=n p$ and $\mathbb{E}[Y]=m p$ because $X \sim \operatorname{Bin}(n, p)$ and $Y \sim \operatorname{Bin}(m, p)$. Also,

$$
\operatorname{Cov}[X, Y]=\operatorname{Cov}[X, Y-X]+\operatorname{Cov}[X, X]=0+\operatorname{Var}[X]=n p(1-p)
$$

because $X, Y-X$ are independent.

Question 4. Let

$$
f(s)= \begin{cases}0 & s \notin[0,1] \\ 2 s & s \in[0,1]\end{cases}
$$

- For X to be absolutely continuous we need F_{X} to be continuous, specifically at 1 , so $C 1^{2}=1$, or $C=1$. Now note that

$$
F_{X}(t)=\left\{\begin{array}{lr}
0=\int_{-\infty}^{t} f(s) d s & t<0 \\
t^{2}=\int_{0}^{t} 2 s d s=\int_{-\infty}^{t} f(s) d s & 0 \leq t<1 \\
1=\int_{0}^{1} 2 s d s=\int_{-\infty}^{t} f(s) d s & t \geq 1
\end{array}\right.
$$

So X is absolutely continuous with density $f_{X}=f$.
\bullet

$$
\begin{gathered}
\mathbb{E}[X]=\int_{-\infty}^{\infty} s f_{X}(s) d s=\int_{0}^{1} 2 s^{2} d s=\frac{2}{3} \\
\mathbb{E}\left[X^{2}\right]=\int_{0}^{1} s^{2} \cdot 2 s d s=\frac{2}{4}=\frac{1}{2}
\end{gathered}
$$

So $\operatorname{Var}[X]=\frac{1}{2}-\frac{4}{9}=\frac{1}{18}$.

