Probability

Solutions to Exam 3, Fall 2012

Question 1. - Since $\Omega=\{X \leq \lambda \mu\} \uplus\{X>\lambda \mu\}$ we have that $\mathbf{1}_{\{X \leq \lambda \mu\}}+\mathbf{1}_{\{X>\lambda \mu\}}=1$. Also, for any $\omega \in \Omega$, if $X(\omega)>\lambda \mu$ then $X(\omega) Y(\omega)=0 \leq \lambda \mu$. If $X(\omega) \leq \lambda \mu$ then $X(\omega) Y(\omega)=X(\omega) \leq \lambda \mu$. Thus, $X Y \leq \lambda \mu$.

Finally, these two together imply that

$$
\mathbb{E}[X Z]=\mathbb{E}[X]-\mathbb{E}[X Y] \geq \mu-\lambda \mu=(1-\lambda) \mu
$$

- By the Cauchy-Schwarz inequality

$$
(\mathbb{E}[X Z])^{2} \leq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Z^{2}\right]=\mathbb{E}\left[X^{2}\right] \cdot \mathbb{P}[X>\lambda \mu],
$$

since $Z^{2}=Z$.

- We have

$$
(1-\lambda)^{2} \mu^{2} \leq \mathbb{E}[X Z] \leq \mathbb{E}\left[X^{2}\right] \cdot \mathbb{P}[X>\lambda \mu]
$$

- If $X \sim \operatorname{Exp}(\alpha)$, then

$$
e^{-(1-\alpha)}=\mathbb{P}\left[X>\frac{1-\alpha}{\alpha}\right]=\mathbb{P}[X>(1-\alpha) \cdot \mathbb{E}[X]] \geq \alpha^{2} \cdot \frac{(\mathbb{E}[X])^{2}}{\mathbb{E}\left[X^{2}\right]}=\frac{\alpha^{2}}{2}
$$

We have used that $\mathbb{E}\left[X^{2}\right]=\operatorname{Var}[X]+(\mathbb{E}[X])^{2}=\frac{1}{\alpha^{2}}+\frac{1}{\alpha^{2}}=2(\mathbb{E}[X])^{2}$.

Question 2. - Note that

$$
\begin{aligned}
\mathbb{E}\left[(X-c)^{2}\right]-\mathbb{E}\left[(X-\mu)^{2}\right] & =\mathbb{E}\left[X^{2}\right]+c^{2}-2 c \mathbb{E}[X]-\mathbb{E}\left[X^{2}\right]-\mu^{2}+2 \mu \mathbb{E}[X] \\
& =c^{2}-2 c \mu+\mu^{2}=(c-\mu)^{2} \geq 0 .
\end{aligned}
$$

- Note that $\Omega=A \uplus B \uplus C$, so $1=\mathbf{1}_{A}+\mathbf{1}_{B}+\mathbf{1}_{C}$. Also, for any $\omega \in A$ we have that $X(\omega) \leq s<t$, so $|X(\omega)-s|=s-X(\omega)$ and $|X(\omega)-t|=t-X(\omega)$. Similarly, for $\omega \in B$, $|X(\omega)-s|=X(\omega)-s$ and $|X(\omega)-t|=t-X(\omega)$, and for any $\omega \in C,|X(\omega)-s|=X(\omega)-s$ and $|X(\omega)-t|=X(\omega)-t$. Combining all this we get that

$$
\begin{aligned}
|X-s| \mathbf{1}_{A}=(s-X) \mathbf{1}_{A} \quad \text { and } \quad|X-t| \mathbf{1}_{A}=(t-X) \mathbf{1}_{A} \\
|X-s| \mathbf{1}_{B}=(X-s) \mathbf{1}_{B} \quad \text { and } \quad|X-t| \mathbf{1}_{A}=(t-X) \mathbf{1}_{B} \\
|X-s| \mathbf{1}_{C}=(X-s) \mathbf{1}_{C} \quad \text { and } \quad|X-t| \mathbf{1}_{C}=(X-t) \mathbf{1}_{C}
\end{aligned}
$$

Thus,

$$
\begin{gathered}
|X-s|=|X-s|\left(\mathbf{1}_{A}+\mathbf{1}_{B}+\mathbf{1}_{C}\right)=(s-X) \mathbf{1}_{A}+(X-s) \mathbf{1}_{B}+(X-s) \mathbf{1}_{C} \\
|X-t|=|X-t|\left(\mathbf{1}_{A}+\mathbf{1}_{B}+\mathbf{1}_{C}\right)=(t-X) \mathbf{1}_{A}+(t-X) \mathbf{1}_{B}+(X-t) \mathbf{1}_{C}
\end{gathered}
$$

- Using the above

$$
\begin{aligned}
\mathbb{E}[|X-s|]-\mathbb{E}[|X-t|] & =\mathbb{E}\left[((s-X)-(t-X)) \mathbf{1}_{A}+((X-s)-(t-X)) \mathbf{1}_{B}+((X-s)-(X-t)) \mathbf{1}_{C}\right] \\
& =\mathbb{E}\left[(s-t) \mathbf{1}_{A}\right]+\mathbb{E}\left[(2 X-s-t) \mathbf{1}_{B}\right]+\mathbb{E}\left[(t-s) \mathbf{1}_{C}\right] \\
& =(s-t)(\mathbb{P}[A]-\mathbb{P}[C])+\mathbb{E}\left[(2 X-s-t) \mathbf{1}_{B}\right]+(s-t) \mathbb{E}\left[\mathbf{1}_{B}\right]-(s-t) \mathbb{E}\left[\mathbf{1}_{B}\right] \\
& =(s-t) \mathbb{P}[A]-\mathbb{P}[C]-\mathbb{P}[B])+2 \mathbb{E}\left[(X-t) \mathbf{1}_{B}\right] .
\end{aligned}
$$

- Since $\Omega=A \uplus B \uplus C$ we have that $B \uplus C \subseteq A^{c}$. Thus, $\mathbb{P}[B]+\mathbb{P}[C] \leq \mathbb{P}\left[A^{c}\right]=1-\mathbb{P}[A]$. If $\mathbb{P}[A] \geq 1 / 2$, then $1-\mathbb{P}[A] \leq \mathbb{P}[A]$. That is, $\mathbb{P}[A]-\mathbb{P}[B]-\mathbb{P}[C] \geq 0$.

Also, for any $\omega \in B, X(\omega)<t$. Thus, $(X-t) \mathbf{1}_{B} \leq 0$. So altogether, if $\mathbb{P}[X \leq s]=$ $\mathbb{P}[A] \geq 1 / 2$ then for $t>s$,

$$
\mathbb{E}[|X-s|]-\mathbb{E}[|X-t|]=(s-t)(\mathbb{P}[A]-\mathbb{P}[C]-\mathbb{P}[B])+2 \mathbb{E}\left[(X-t) \mathbf{1}_{B}\right] \leq 0
$$

- Let $X=-Y$ and $s=-r$. So $\mathbb{P}[X \leq s]=\mathbb{P}[Y \geq r] \geq \frac{1}{2}$. Since $\mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[Y^{2}\right], X$ has finite second moment, and we get using the above that for any $t>s$,

$$
\mathbb{E}[|X-s|]-\mathbb{E}[|X-t|] \leq 0
$$

If we take $t=-p$ for $p<r$ then $t>s$. So

$$
\mathbb{E}[|Y-r|]=\mathbb{E}[|X-s|] \leq \mathbb{E}[|X-t|]=\mathbb{E}[|Y-p|]
$$

- Since for m we have that $\mathbb{P}[X \geq m] \geq 1 / 2$ and $\mathbb{P}[X \leq m] \geq 1 / 2$, combining the above we get that for any $c>m$ or any $c<m$ we have that

$$
\mathbb{E}[|X-m|] \leq \mathbb{E}[|X-c|]
$$

For $c=m$ this is obvious.

Quesion 3. - We want to find a density f_{Y} so that

$$
\mathbb{P}[Y \leq t]=\int_{-\infty}^{t} f_{Y}(s) d s
$$

Since

$$
\mathbb{P}[Y \leq t]=\mathbb{P}\left[\sqrt{X} \geq \frac{1}{t}\right]=\mathbb{P}\left[X \geq t^{-2}\right]
$$

is we have $t^{-2} \in[0,1]$ then $\mathbb{P}[Y \leq t]=1-t^{-2}$.
A good guess would now be

$$
f_{Y}(s)= \begin{cases}2 s^{-3} & \text { if } s \geq 1 \\ 0 & \text { if } s<1\end{cases}
$$

Indeed, for any $t \geq 1$, we have that $t^{-2} \in[0,1]$, so

$$
\int_{-\infty}^{t} f_{Y}(s) d s=\int_{1}^{t} 2 s^{-3} d s=-\left.s^{-2}\right|_{1} ^{t}=1-t^{-2}=\mathbb{P}[Y \leq t]
$$

If $t<1$, since $X \in[0,1]$, we have that $Y=\frac{1}{\sqrt{X}} \geq 1$, and so

$$
\int_{-\infty}^{t} f_{Y}(s) d s=0=\mathbb{P}[Y \leq t]
$$

So f_{Y} is the density of Y and Y is absolutely continuous.

- Since Y is absolutely continuous,

$$
\mathbb{E}[Y]=\int s f_{Y}(s) d s=\int_{1}^{\infty} 2 s^{-2} d s=-\left.2 s^{-1}\right|_{1} ^{\infty}=2
$$

- Similarly,

$$
\mathbb{E}\left[Y^{2}\right]=\int_{1}^{\infty} 2 s^{-1} d s=\infty
$$

Question 4. - First, since for $s \in[0, \pi / 2]$ we have that $\cos (s) \geq 0, f_{X}$ is non-negative.
Second,

$$
\int f_{X}(s) d s=\int_{0}^{\pi / 2} \cos (s) d s=\left.\sin (s)\right|_{0} ^{\pi / 2}=1
$$

so f_{X} is indeed a density.

- Since $\frac{\partial}{\partial x}(x \sin (x)+\cos (x))=x \cos (x)$, we have that

$$
\mathbb{E}[X]=\int_{0}^{\pi / 2} s \cos (s) d s=\left.(s \sin (s)+\cos (s))\right|_{0} ^{\pi / 2}=\frac{\pi}{2}-1
$$

- If $Y=\frac{1}{X}$, since $X \in[0, \pi / 2]$ we have that $Y \in\left[\frac{2}{\pi}, \infty\right)$. That is, for any $t<\frac{2}{\pi}$,

$$
\mathbb{P}[Y \leq t]=0=\int_{-\infty}^{t} f_{Y}(s) d s
$$

For $t \geq \frac{2}{\pi}$ we have that $\frac{1}{t} \in[0, \pi / 2]$, so

$$
\begin{aligned}
\mathbb{P}[Y \leq t] & =\mathbb{P}\left[X \geq \frac{1}{t}\right]=\int_{1 / t}^{\pi / 2} \cos (s) d s \\
& =\left.\sin (s)\right|_{1 / t} ^{\pi / 2}=1-\sin (1 / t)
\end{aligned}
$$

But also, since

$$
\frac{\partial}{\partial x} \sin (1 / x)=-\cos (1 / x) \cdot x^{-2}
$$

we get that for $t \geq \frac{2}{\pi}$,

$$
\begin{aligned}
\int_{-\infty}^{t} f_{Y}(s) d s & =\int_{2 / \pi}^{t} \cos (1 / s) \cdot s^{-2} d s=-\left.\sin (1 / s)\right|_{2 / \pi} ^{t} \\
& =1-\sin (1 / t)=\mathbb{P}[Y \leq t]
\end{aligned}
$$

So f_{Y} is indeed the density of Y.

