Probability

Solutions Exam A, 2017

Solution to Q1.

(A) By linearity of expectation

$$
\mathbb{E}[W]=\sum_{k=1}^{n} a_{k} \mathbb{P}[Z=k]=\frac{1}{n} \sum_{k=1}^{n} a_{k} .
$$

Also,

$$
\mathbb{E}\left[W^{2}\right]=\mathbb{E} \sum_{j, k=1}^{n} a_{j} a_{k} \mathbf{1}_{\{Z=j\}} \mathbf{1}_{\{Z=k\}}
$$

Since

$$
\mathbf{1}_{\{Z=j\}} \mathbf{1}_{\{Z=k\}}=\mathbf{1}_{\{Z=j\} \cap\{Z=k\}}= \begin{cases}\mathbf{1}_{\{Z=k\}} & \text { if } j=k \\ 0 & \text { if } j \neq k\end{cases}
$$

we get that

$$
\mathbb{E}\left[W^{2}\right]=\mathbb{E} \sum_{k=1}^{n} a_{k}^{2} \mathbf{1}_{\{Z=k\}}=\frac{1}{n} \sum_{k=1}^{n} a_{k}^{2}
$$

Since $\mathbb{E}\left[W^{2}\right]-(\mathbb{E}[W])^{2}=\operatorname{Var}[W] \geq 0$, we have that

$$
\frac{1}{n} \sum_{k=1}^{n} a_{k}^{2} \geq\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{2}
$$

which is equivalent to

$$
\sum_{k=1}^{n} a_{k}^{2} \geq \frac{1}{n}\left(\sum_{k=1}^{n} a_{k}\right)^{2}
$$

Since $(\{X=k\})_{k=1}^{n}$ are an almost-partition of the space, using the law of total probability

$$
\begin{aligned}
\mathbb{P}[X=Y] & =\sum_{k=1}^{n} \mathbb{P}[X=Y, X=k]=\sum_{k=1}^{n} \mathbb{P}[X=k, Y=k] \\
& =\sum_{k=1}^{n} \mathbb{P}[X=k] \cdot \mathbb{P}[Y=k]=\sum_{k=1}^{n} f_{X}(k)^{2} .
\end{aligned}
$$

(B) Since $(\{X=k\})_{k=1}^{n}$ are an almost-partition of the space, using the law of total probability

$$
\begin{aligned}
\mathbb{P}[X=Y] & =\sum_{k=1}^{n} \mathbb{P}[X=Y, X=k]=\sum_{k=1}^{n} \mathbb{P}[X=k, Y=k] \\
& =\sum_{k=1}^{n} \mathbb{P}[X=k] \cdot \mathbb{P}[Y=k]=\sum_{k=1}^{n} f_{X}(k)^{2}=\frac{1}{n}
\end{aligned}
$$

(C) As before, since $(\{X=k\})_{k=1}^{n}$ are an almost-partition of the space, using the law of total probability

$$
\begin{aligned}
\mathbb{P}[X=Y] & =\sum_{k=1}^{n} \mathbb{P}[X=Y, X=k]=\sum_{k=1}^{n} \mathbb{P}[X=k, Y=k] \\
& =\sum_{k=1}^{n} \mathbb{P}[X=k] \cdot \mathbb{P}[Y=k]=\sum_{k=1}^{n} f_{X}(k)^{2} .
\end{aligned}
$$

Using (A)

$$
\mathbb{P}[X=Y]=\sum_{k=1}^{n} f_{X}(k)^{2} \geq \frac{1}{n}\left(\sum_{k=1}^{n} f_{X}(k)\right)^{2}=\frac{1}{n} .
$$

Solution to Q2.

(A) Let $\varepsilon_{n} \searrow 0$. Let $r \in \mathbb{R}$. The events $A_{n}:=\left\{X \geq r-\varepsilon_{n}\right\}$ are decreasing in n; indeed, if $n>m$ then $\varepsilon_{n}<\varepsilon_{m}$ so $r-\varepsilon_{n}>r-\varepsilon_{m}$, which implies

$$
A_{n}=\left\{X \geq r-\varepsilon_{n}\right\} \subset\left\{X \geq r-\varepsilon_{m}\right\}=A_{m}
$$

Thus $\lim A_{n}=\bigcap_{n} A_{n}=\{X \geq r\}$ and by continuity of probability,

$$
T_{X}(r)=\mathbb{P}[X \geq r]=\lim _{n \rightarrow \infty} \mathbb{P}\left[X \geq r-\varepsilon_{n}\right]=\lim _{n \rightarrow \infty} T_{X}\left(r-\varepsilon_{n}\right) .
$$

Since this holds for any $\varepsilon_{n} \searrow 0$ we have that T_{X} is left continuous.
(B) If $r \geq r^{\prime}$ then $\{X \geq r\} \subset\left\{X \geq r^{\prime}\right\}$, so

$$
T_{X}(r)=\mathbb{P}[X \geq r] \leq \mathbb{P}\left[X \geq r^{\prime}\right]=T_{X}\left(r^{\prime}\right)
$$

(C) Define $A_{n}=\{X \geq n\}$ and $B_{n}=\{X \geq-n\}$. So $\left(A_{n}\right)_{n}$ are decreasing with $\operatorname{limit} \lim A_{n}=\bigcap_{n} A_{n}=\emptyset$ and $\left(B_{n}\right)_{n}$ are increasing with limit $\lim B_{n}=$ $\bigcup_{n} B_{n}=\Omega$. Hence by continuity of probability,

$$
\begin{gathered}
0=\mathbb{P}[\emptyset]=\lim \mathbb{P}\left[A_{n}\right]=\lim T_{X}(n), \\
1=\mathbb{P}[\Omega]=\lim \mathbb{P}\left[B_{n}\right]=\lim T_{X}(-n) .
\end{gathered}
$$

(D) We have

$$
\{a \leq X<b\}=\{X \geq a\} \backslash\{X \geq b\}
$$

with $\{X \geq b\} \subset\{X \geq a\}$ because $a<b$, so

$$
\mathbb{P}[a \leq X<b]=\mathbb{P}[X \geq a]-\mathbb{P}[X \geq b]=T_{X}(a)-T_{X}(b)
$$

(E) The events $A_{n}=\left\{a \leq X<a+2^{-n}\right\}$ for a decreasing sequence of events with limit $\lim A_{n}=\bigcap_{n} A_{n}=\{X=a\}$. So

$$
\mathbb{P}[X=a]=\lim \mathbb{P}\left[A_{n}\right]=\lim \mathbb{P}\left[a \leq X<a+2^{-n}\right]=T_{X}(a)-\lim T_{X}\left(a+2^{-n}\right)
$$

Solution to Q3.

(A) Since X is continuous, $\mathbb{P}[X=0]=0$. So $\mathbb{P}[Y \leq t]=\mathbb{P}\left[X^{-1 / n} \leq t\right]$ for any t. If $t<1$ then

$$
\mathbb{P}[Y \leq t]=\mathbb{P}\left[X^{-1 / n} \leq t\right]=0
$$

For $t \geq 1$,

$$
\mathbb{P}[Y \leq t]=\mathbb{P}\left[X^{1 / n} \geq t^{-1}\right]=\mathbb{P}\left[X \geq t^{-n}\right]=1-t^{-n}
$$

If we define

$$
f_{Y}(s)= \begin{cases}0 & s \leq 1 \\ n s^{-n-1} & s>1\end{cases}
$$

we obtain that for $t \geq 1$

$$
F_{Y}(t)=1-t^{-n}=\int_{1}^{t} n s^{-n-1} d s=\int_{-\infty}^{t} f_{Y}(s) d s
$$

and for $t<1$,

$$
F_{Y}(t)=0=\int_{-\infty}^{t} f_{Y}(s) d s
$$

So Y is absolutely continuous with density f_{Y}.
(B)

$$
\mathbb{E}[Y]=\int_{-\infty}^{\infty} s f_{Y}(s) d s=\int_{1}^{\infty} n s^{-n} d s=-\left.\frac{n}{n-1} s^{-(n-1)}\right|_{1} ^{\infty}=\frac{n}{n-1}
$$

(C)

$$
\begin{aligned}
\mathbb{E}\left[Y^{n}\right] & =\int_{-\infty}^{\infty} s^{n} f_{Y}(s) d s=\int_{1}^{\infty} n s^{-n-1} s^{n} d s \\
& =n \cdot \lim _{k \rightarrow \infty} \int_{1}^{k} s^{-1} d s=n \cdot \lim _{k \rightarrow \infty} \log k=\infty
\end{aligned}
$$

Solution to Q4.

(A) If X, Y are independent, then the events $\{X=1\},\{Y=1\}$ are independent, so
$\mathbb{E}[X Y]=\mathbb{P}[X Y=1]=\mathbb{P}[X=1, Y=1]=\mathbb{P}[X=1] \cdot \mathbb{P}[Y=1]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$.

So $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y]=0$ and X, Y are uncorrelated.
If X, Y are uncorrelated, then in order to prove that they are independent, it suffices to prove that $\mathbb{P}[X=a, Y=b]=\mathbb{P}[X=a] \cdot \mathbb{P}[Y=b]$ for all $a, b \in \mathbb{R}$. Since $R_{X}=R_{Y}=\{0,1\}$ it suffices to show this for $a, b \in\{0,1\}$.

Indeed, using $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$,

$$
\begin{aligned}
& \mathbb{P}[X=1, Y=1] \\
& \begin{aligned}
\mathbb{P}[X=0, Y=1] & =\mathbb{E}[X Y]=\mathbb{E}[(1-X) Y]=\mathbb{E}[Y]=\mathbb{P}[X=1] \cdot \mathbb{P}[Y=1] \\
& =\mathbb{P}[Y=1] \cdot(1-\mathbb{P}[X=1])=\mathbb{P}[Y=1] \cdot \mathbb{P}[X=0]
\end{aligned} \\
& \begin{aligned}
\mathbb{P}[X=1, Y=0] & =\mathbb{E}[X(1-Y)]=\mathbb{E}[X]-\mathbb{E}[X] \cdot \mathbb{E}[Y] \\
& =\mathbb{P}[X=1] \cdot(1-\mathbb{P}[Y=1])=\mathbb{P}[X=1] \cdot \mathbb{P}[Y=0] \\
\mathbb{P}[X=0, Y=0] & =\mathbb{E}[(1-X)(1-Y)]=1-\mathbb{E}[X]-\mathbb{E}[Y]+\mathbb{E}[X] \cdot \mathbb{E}[Y] \\
& =(1-\mathbb{E}[X]) \cdot(1-\mathbb{E}[Y])=\mathbb{P}[X=0] \cdot \mathbb{P}[Y=0]
\end{aligned}
\end{aligned}
$$

(B) We want to choose p, q, r so that $\mathbb{E}[X Y Z]=\mathbb{E}[X] \cdot \mathbb{E}[Y] \cdot \mathbb{E}[Z]$ but that they are not independent. Note that

$$
\mathbb{E}[X Y Z]=\mathbb{P}[X Y Z=1]=\mathbb{P}[X=1, Y=1, Z=1]
$$

In order to define all three random variables X, Y, Z we need to specify $f_{X, Y, Z}(x, y, z)$ for all $2^{3}=8$ possible vectors $(x, y, z) \in\{0,1\}^{3}$. If $f_{X, Y, Z}(x, y, z)=\frac{1}{8}$ for all such vectors, then one can check that X, Y, Z are independent, so this is not a good option.

However, we will take this uniform distribution on 8 vectors, and "shift" it a bit, still keeping the marginal distributions of X, Y, Z to be $\operatorname{Ber}(1 / 2)$, and keeping $f_{X, Y, Z}(1,1,1)=\frac{1}{8}$. This will ensure that

$$
\mathbb{P}[X=1, Y=1, Z=1]=\frac{1}{8}=2^{-3}=\mathbb{P}[X=1] \cdot \mathbb{P}[Y=1] \cdot \mathbb{P}[Z=1]
$$

so that $\mathbb{E}[X Y Z]=\mathbb{E}[X] \cdot \mathbb{E}[Y] \cdot \mathbb{E}[Z]$. To ensure that $\mathbb{P}[X=1]=\mathbb{P}[Y=$ $1]=\mathbb{P}[Z=1]=\frac{1}{2}$ we need to make sure that summing the two irrelevant coordinates in $f_{X, Y, Z}$ gives $\frac{1}{2}$.

One possibility is as follows:

$$
f_{X, Y, Z}(x, y, z)= \begin{cases}\frac{1}{8} & (x, y, z)=(0,0,0) \\ \frac{1}{8} & (x, y, z)=(0,0,1) \\ \frac{3}{16} & (x, y, z)=(0,1,0) \\ \frac{1}{16} & (x, y, z)=(1,0,0) \\ \frac{1}{16} & (x, y, z)=(0,1,1) \\ \frac{1}{8} & (x, y, z)=(1,1,0) \\ \frac{3}{16} & (x, y, z)=(1,0,1) \\ \frac{1}{8} & (x, y, z)=(1,1,1)\end{cases}
$$

Indeed it may be easily checked that

$$
\mathbb{P}[X=1]=\mathbb{P}[Y=1]=\mathbb{P}[Z=1]=\frac{1}{2}
$$

and that X, Y, Z are not independent because, for example,

$$
\mathbb{P}[X=0, Y=1, Z=0]=\frac{3}{16} \neq 2^{-3}=\mathbb{P}[X=0] \cdot \mathbb{P}[Y=1] \cdot \mathbb{P}[Z=0] .
$$

