Probability

Solutions Exam A, 2017

Solution to Q1.

(A) By linearity of expectation

$$\mathbb{E}[W] = \sum_{k=1}^{n} a_k \mathbb{P}[Z=k] = \frac{1}{n} \sum_{k=1}^{n} a_k.$$

Also,

$$\mathbb{E}[W^2] = \mathbb{E}\sum_{j,k=1}^n a_j a_k \mathbf{1}_{\{Z=j\}} \mathbf{1}_{\{Z=k\}}.$$

Since

$$\mathbf{1}_{\{Z=j\}}\mathbf{1}_{\{Z=k\}} = \mathbf{1}_{\{Z=j\}\cap\{Z=k\}} = \begin{cases} \mathbf{1}_{\{Z=k\}} & \text{if } j = k\\ 0 & \text{if } j \neq k \end{cases}$$

we get that

$$\mathbb{E}[W^2] = \mathbb{E}\sum_{k=1}^n a_k^2 \mathbf{1}_{\{Z=k\}} = \frac{1}{n}\sum_{k=1}^n a_k^2.$$

Since $\mathbb{E}[W^2] - (\mathbb{E}[W])^2 = \operatorname{Var}[W] \ge 0$, we have that

$$\frac{1}{n}\sum_{k=1}^{n}a_k^2 \ge \left(\frac{1}{n}\sum_{k=1}^{n}a_k\right)^2,$$

which is equivalent to

$$\sum_{k=1}^{n} a_k^2 \ge \frac{1}{n} \Big(\sum_{k=1}^{n} a_k\Big)^2.$$

Since $({X = k})_{k=1}^{n}$ are an almost-partition of the space, using the law of total probability

$$\mathbb{P}[X = Y] = \sum_{k=1}^{n} \mathbb{P}[X = Y, X = k] = \sum_{k=1}^{n} \mathbb{P}[X = k, Y = k]$$
$$= \sum_{k=1}^{n} \mathbb{P}[X = k] \cdot \mathbb{P}[Y = k] = \sum_{k=1}^{n} f_X(k)^2.$$

(B) Since $({X = k})_{k=1}^{n}$ are an almost-partition of the space, using the law of total probability

$$\mathbb{P}[X = Y] = \sum_{k=1}^{n} \mathbb{P}[X = Y, X = k] = \sum_{k=1}^{n} \mathbb{P}[X = k, Y = k]$$
$$= \sum_{k=1}^{n} \mathbb{P}[X = k] \cdot \mathbb{P}[Y = k] = \sum_{k=1}^{n} f_X(k)^2 = \frac{1}{n}.$$

(C) As before, since $({X = k})_{k=1}^{n}$ are an almost-partition of the space, using the law of total probability

$$\mathbb{P}[X = Y] = \sum_{k=1}^{n} \mathbb{P}[X = Y, X = k] = \sum_{k=1}^{n} \mathbb{P}[X = k, Y = k]$$
$$= \sum_{k=1}^{n} \mathbb{P}[X = k] \cdot \mathbb{P}[Y = k] = \sum_{k=1}^{n} f_X(k)^2.$$

Using (A)

$$\mathbb{P}[X=Y] = \sum_{k=1}^{n} f_X(k)^2 \ge \frac{1}{n} \Big(\sum_{k=1}^{n} f_X(k)\Big)^2 = \frac{1}{n}.$$

Solution to Q2.

(A) Let $\varepsilon_n \searrow 0$. Let $r \in \mathbb{R}$. The events $A_n := \{X \ge r - \varepsilon_n\}$ are decreasing in n; indeed, if n > m then $\varepsilon_n < \varepsilon_m$ so $r - \varepsilon_n > r - \varepsilon_m$, which implies

$$A_n = \{X \ge r - \varepsilon_n\} \subset \{X \ge r - \varepsilon_m\} = A_m.$$

Thus $\lim A_n = \bigcap_n A_n = \{X \ge r\}$ and by continuity of probability,

$$T_X(r) = \mathbb{P}[X \ge r] = \lim_{n \to \infty} \mathbb{P}[X \ge r - \varepsilon_n] = \lim_{n \to \infty} T_X(r - \varepsilon_n).$$

Since this holds for any $\varepsilon_n \searrow 0$ we have that T_X is left continuous. (B) If $r \ge r'$ then $\{X \ge r\} \subset \{X \ge r'\}$, so

$$T_X(r) = \mathbb{P}[X \ge r] \le \mathbb{P}[X \ge r'] = T_X(r').$$

(C) Define $A_n = \{X \ge n\}$ and $B_n = \{X \ge -n\}$. So $(A_n)_n$ are decreasing with limit $\lim A_n = \bigcap_n A_n = \emptyset$ and $(B_n)_n$ are increasing with limit $\lim B_n = \bigcup_n B_n = \Omega$. Hence by continuity of probability,

$$0 = \mathbb{P}[\emptyset] = \lim \mathbb{P}[A_n] = \lim T_X(n),$$
$$1 = \mathbb{P}[\Omega] = \lim \mathbb{P}[B_n] = \lim T_X(-n).$$

(D) We have

$$\{a \le X < b\} = \{X \ge a\} \setminus \{X \ge b\}$$

with $\{X \ge b\} \subset \{X \ge a\}$ because a < b, so

$$\mathbb{P}[a \le X < b] = \mathbb{P}[X \ge a] - \mathbb{P}[X \ge b] = T_X(a) - T_X(b).$$

(E) The events $A_n = \{a \leq X < a + 2^{-n}\}$ for a decreasing sequence of events with limit $\lim A_n = \bigcap_n A_n = \{X = a\}$. So

$$\mathbb{P}[X = a] = \lim \mathbb{P}[A_n] = \lim \mathbb{P}[a \le X < a + 2^{-n}] = T_X(a) - \lim T_X(a + 2^{-n}).$$

Solution to Q3.

(A) Since X is continuous, $\mathbb{P}[X=0] = 0$. So $\mathbb{P}[Y \le t] = \mathbb{P}[X^{-1/n} \le t]$ for any t. If t < 1 then

$$\mathbb{P}[Y \le t] = \mathbb{P}[X^{-1/n} \le t] = 0.$$

For $t \geq 1$,

$$\mathbb{P}[Y \le t] = \mathbb{P}[X^{1/n} \ge t^{-1}] = \mathbb{P}[X \ge t^{-n}] = 1 - t^{-n}.$$

If we define

$$f_Y(s) = \begin{cases} 0 & s \le 1\\ ns^{-n-1} & s > 1 \end{cases}$$

we obtain that for $t\geq 1$

$$F_Y(t) = 1 - t^{-n} = \int_1^t n s^{-n-1} ds = \int_{-\infty}^t f_Y(s) ds,$$

and for t < 1,

$$F_Y(t) = 0 = \int_{-\infty}^t f_Y(s) ds.$$

So Y is absolutely continuous with density f_Y .

(B)

$$\mathbb{E}[Y] = \int_{-\infty}^{\infty} sf_Y(s)ds = \int_{1}^{\infty} ns^{-n}ds = -\frac{n}{n-1}s^{-(n-1)}\Big|_{1}^{\infty} = \frac{n}{n-1}.$$

(C)

$$\mathbb{E}[Y^n] = \int_{-\infty}^{\infty} s^n f_Y(s) ds = \int_1^{\infty} n s^{-n-1} s^n ds$$
$$= n \cdot \lim_{k \to \infty} \int_1^k s^{-1} ds = n \cdot \lim_{k \to \infty} \log k = \infty.$$

Solution to Q4.

(A) If X, Y are independent, then the events $\{X = 1\}, \{Y = 1\}$ are independent, so

$$\mathbb{E}[XY] = \mathbb{P}[XY = 1] = \mathbb{P}[X = 1, Y = 1] = \mathbb{P}[X = 1] \cdot \mathbb{P}[Y = 1] = \mathbb{E}[X] \cdot \mathbb{E}[Y].$$

So $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y] = 0$ and X, Y are uncorrelated.

If X, Y are uncorrelated, then in order to prove that they are independent, it suffices to prove that $\mathbb{P}[X = a, Y = b] = \mathbb{P}[X = a] \cdot \mathbb{P}[Y = b]$ for all $a, b \in \mathbb{R}$. Since $R_X = R_Y = \{0, 1\}$ it suffices to show this for $a, b \in \{0, 1\}$. Indeed, using $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$,

$$\begin{split} \mathbb{P}[X=1,Y=1] &= \mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y] = \mathbb{P}[X=1] \cdot \mathbb{P}[Y=1].\\ \mathbb{P}[X=0,Y=1] = \mathbb{E}[(1-X)Y] = \mathbb{E}[Y] - \mathbb{E}[X] \cdot \mathbb{E}[Y]\\ &= \mathbb{P}[Y=1] \cdot (1-\mathbb{P}[X=1]) = \mathbb{P}[Y=1] \cdot \mathbb{P}[X=0].\\ \mathbb{P}[X=1,Y=0] = \mathbb{E}[X(1-Y)] = \mathbb{E}[X] - \mathbb{E}[X] \cdot \mathbb{E}[Y]\\ &= \mathbb{P}[X=1] \cdot (1-\mathbb{P}[Y=1]) = \mathbb{P}[X=1] \cdot \mathbb{P}[Y=0].\\ \mathbb{P}[X=0,Y=0] = \mathbb{E}[(1-X)(1-Y)] = 1 - \mathbb{E}[X] - \mathbb{E}[Y] + \mathbb{E}[X] \cdot \mathbb{E}[Y]\\ &= (1-\mathbb{E}[X]) \cdot (1-\mathbb{E}[Y]) = \mathbb{P}[X=0] \cdot \mathbb{P}[Y=0]. \end{split}$$

(B) We want to choose p, q, r so that $\mathbb{E}[XYZ] = \mathbb{E}[X] \cdot \mathbb{E}[Y] \cdot \mathbb{E}[Z]$ but that they are not independent. Note that

$$\mathbb{E}[XYZ] = \mathbb{P}[XYZ = 1] = \mathbb{P}[X = 1, Y = 1, Z = 1].$$

In order to define all three random variables X, Y, Z we need to specify $f_{X,Y,Z}(x, y, z)$ for all $2^3 = 8$ possible vectors $(x, y, z) \in \{0, 1\}^3$. If $f_{X,Y,Z}(x, y, z) = \frac{1}{8}$ for all such vectors, then one can check that X, Y, Z are independent, so this is not a good option.

However, we will take this uniform distribution on 8 vectors, and "shift" it a bit, still keeping the marginal distributions of X, Y, Z to be Ber(1/2), and keeping $f_{X,Y,Z}(1,1,1) = \frac{1}{8}$. This will ensure that

$$\mathbb{P}[X=1, Y=1, Z=1] = \frac{1}{8} = 2^{-3} = \mathbb{P}[X=1] \cdot \mathbb{P}[Y=1] \cdot \mathbb{P}[Z=1],$$

so that $\mathbb{E}[XYZ] = \mathbb{E}[X] \cdot \mathbb{E}[Y] \cdot \mathbb{E}[Z]$. To ensure that $\mathbb{P}[X = 1] = \mathbb{P}[Y = 1] = \mathbb{P}[Z = 1] = \frac{1}{2}$ we need to make sure that summing the two irrelevant coordinates in $f_{X,Y,Z}$ gives $\frac{1}{2}$.

One possibility is as follows:

$$f_{X,Y,Z}(x,y,z) = \begin{cases} \frac{1}{8} & (x,y,z) = (0,0,0) \\ \frac{1}{8} & (x,y,z) = (0,0,1) \\ \frac{3}{16} & (x,y,z) = (0,1,0) \\ \frac{1}{16} & (x,y,z) = (1,0,0) \\ \frac{1}{16} & (x,y,z) = (1,0,0) \\ \frac{1}{8} & (x,y,z) = (0,1,1) \\ \frac{1}{8} & (x,y,z) = (1,1,0) \\ \frac{3}{16} & (x,y,z) = (1,0,1) \\ \frac{1}{8} & (x,y,z) = (1,1,1) \end{cases}$$

Indeed it may be easily checked that

$$\mathbb{P}[X=1] = \mathbb{P}[Y=1] = \mathbb{P}[Z=1] = \frac{1}{2}$$

and that X, Y, Z are not independent because, for example,

$$\mathbb{P}[X=0, Y=1, Z=0] = \frac{3}{16} \neq 2^{-3} = \mathbb{P}[X=0] \cdot \mathbb{P}[Y=1] \cdot \mathbb{P}[Z=0].$$