
Probability

Solutions Exam A, 2017

Solution to Q1.

(A) By linearity of expectation

E[W ] =
n∑

k=1

ak P[Z = k] =
1

n

n∑
k=1

ak.

Also,

E[W 2] = E
n∑

j,k=1

ajak1{Z=j}1{Z=k}.

Since

1{Z=j}1{Z=k} = 1{Z=j}∩{Z=k} =

1{Z=k} if j = k

0 if j 6= k

we get that

E[W 2] = E
n∑

k=1

a2k1{Z=k} =
1

n

n∑
k=1

a2k.

Since E[W 2]− (E[W ])2 = Var[W ] ≥ 0, we have that

1

n

n∑
k=1

a2k ≥
( 1

n

n∑
k=1

ak

)2
,

which is equivalent to

n∑
k=1

a2k ≥
1

n

( n∑
k=1

ak

)2
.

1
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Since ({X = k})nk=1 are an almost-partition of the space, using the law

of total probability

P[X = Y ] =
n∑

k=1

P[X = Y,X = k] =
n∑

k=1

P[X = k, Y = k]

=
n∑

k=1

P[X = k] · P[Y = k] =
n∑

k=1

fX(k)2.

(B) Since ({X = k})nk=1 are an almost-partition of the space, using the law of

total probability

P[X = Y ] =
n∑

k=1

P[X = Y,X = k] =
n∑

k=1

P[X = k, Y = k]

=
n∑

k=1

P[X = k] · P[Y = k] =
n∑

k=1

fX(k)2 =
1

n
.

(C) As before, since ({X = k})nk=1 are an almost-partition of the space, using

the law of total probability

P[X = Y ] =
n∑

k=1

P[X = Y,X = k] =
n∑

k=1

P[X = k, Y = k]

=
n∑

k=1

P[X = k] · P[Y = k] =
n∑

k=1

fX(k)2.

Using (A)

P[X = Y ] =
n∑

k=1

fX(k)2 ≥ 1

n

( n∑
k=1

fX(k)
)2

=
1

n
.

Solution to Q2.

(A) Let εn ↘ 0. Let r ∈ R. The events An := {X ≥ r − εn} are decreasing in

n; indeed, if n > m then εn < εm so r − εn > r − εm, which implies

An = {X ≥ r − εn} ⊂ {X ≥ r − εm} = Am.

Thus limAn =
⋂

n An = {X ≥ r} and by continuity of probability,

TX(r) = P[X ≥ r] = lim
n→∞

P[X ≥ r − εn] = lim
n→∞

TX(r − εn).
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Since this holds for any εn ↘ 0 we have that TX is left continuous.

(B) If r ≥ r′ then {X ≥ r} ⊂ {X ≥ r′}, so

TX(r) = P[X ≥ r] ≤ P[X ≥ r′] = TX(r′).

(C) Define An = {X ≥ n} and Bn = {X ≥ −n}. So (An)n are decreasing with

limit limAn =
⋂

n An = ∅ and (Bn)n are increasing with limit limBn =⋃
n Bn = Ω. Hence by continuity of probability,

0 = P[∅] = limP[An] = limTX(n),

1 = P[Ω] = limP[Bn] = limTX(−n).

(D) We have

{a ≤ X < b} = {X ≥ a} \ {X ≥ b}

with {X ≥ b} ⊂ {X ≥ a} because a < b, so

P[a ≤ X < b] = P[X ≥ a]− P[X ≥ b] = TX(a)− TX(b).

(E) The events An = {a ≤ X < a + 2−n} for a decreasing sequence of events

with limit limAn =
⋂

nAn = {X = a}. So

P[X = a] = limP[An] = limP[a ≤ X < a + 2−n] = TX(a)− limTX(a + 2−n).

Solution to Q3.

(A) Since X is continuous, P[X = 0] = 0. So P[Y ≤ t] = P[X−1/n ≤ t] for any

t. If t < 1 then

P[Y ≤ t] = P[X−1/n ≤ t] = 0.

For t ≥ 1,

P[Y ≤ t] = P[X1/n ≥ t−1] = P[X ≥ t−n] = 1− t−n.
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If we define

fY (s) =

0 s ≤ 1

ns−n−1 s > 1

we obtain that for t ≥ 1

FY (t) = 1− t−n =

∫ t

1

ns−n−1ds =

∫ t

−∞
fY (s)ds,

and for t < 1,

FY (t) = 0 =

∫ t

−∞
fY (s)ds.

So Y is absolutely continuous with density fY .

(B)

E[Y ] =

∫ ∞
−∞

sfY (s)ds =

∫ ∞
1

ns−nds = − n
n−1s

−(n−1)
∣∣∣∞
1

= n
n−1 .

(C)

E[Y n] =

∫ ∞
−∞

snfY (s)ds =

∫ ∞
1

ns−n−1snds

= n · lim
k→∞

∫ k

1

s−1ds = n · lim
k→∞

log k =∞.

Solution to Q4.

(A) If X, Y are independent, then the events {X = 1}, {Y = 1} are indepen-

dent, so

E[XY ] = P[XY = 1] = P[X = 1 , Y = 1] = P[X = 1] · P[Y = 1] = E[X] · E[Y ].

So Cov(X, Y ) = E[XY ]− E[X] · E[Y ] = 0 and X, Y are uncorrelated.

If X, Y are uncorrelated, then in order to prove that they are indepen-

dent, it suffices to prove that P[X = a, Y = b] = P[X = a] ·P[Y = b] for all

a, b ∈ R. Since RX = RY = {0, 1} it suffices to show this for a, b ∈ {0, 1}.
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Indeed, using E[XY ] = E[X] · E[Y ],

P[X = 1, Y = 1] = E[XY ] = E[X] · E[Y ] = P[X = 1] · P[Y = 1].

P[X = 0, Y = 1] = E[(1−X)Y ] = E[Y ]− E[X] · E[Y ]

= P[Y = 1] · (1− P[X = 1]) = P[Y = 1] · P[X = 0].

P[X = 1, Y = 0] = E[X(1− Y )] = E[X]− E[X] · E[Y ]

= P[X = 1] · (1− P[Y = 1]) = P[X = 1] · P[Y = 0].

P[X = 0, Y = 0] = E[(1−X)(1− Y )] = 1− E[X]− E[Y ] + E[X] · E[Y ]

= (1− E[X]) · (1− E[Y ]) = P[X = 0] · P[Y = 0].

(B) We want to choose p, q, r so that E[XY Z] = E[X] · E[Y ] · E[Z] but that

they are not independent. Note that

E[XY Z] = P[XY Z = 1] = P[X = 1 , Y = 1 , Z = 1].

In order to define all three random variables X, Y, Z we need to spec-

ify fX,Y,Z(x, y, z) for all 23 = 8 possible vectors (x, y, z) ∈ {0, 1}3. If

fX,Y,Z(x, y, z) = 1
8

for all such vectors, then one can check that X, Y, Z are

independent, so this is not a good option.

However, we will take this uniform distribution on 8 vectors, and “shift”

it a bit, still keeping the marginal distributions of X, Y, Z to be Ber(1/2),

and keeping fX,Y,Z(1, 1, 1) = 1
8
. This will ensure that

P[X = 1 , Y = 1 , Z = 1] = 1
8

= 2−3 = P[X = 1] · P[Y = 1] · P[Z = 1],

so that E[XY Z] = E[X] · E[Y ] · E[Z]. To ensure that P[X = 1] = P[Y =

1] = P[Z = 1] = 1
2

we need to make sure that summing the two irrelevant

coordinates in fX,Y,Z gives 1
2
.
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One possibility is as follows:

fX,Y,Z(x, y, z) =



1
8

(x, y, z) = (0, 0, 0)

1
8

(x, y, z) = (0, 0, 1)

3
16

(x, y, z) = (0, 1, 0)

1
16

(x, y, z) = (1, 0, 0)

1
16

(x, y, z) = (0, 1, 1)

1
8

(x, y, z) = (1, 1, 0)

3
16

(x, y, z) = (1, 0, 1)

1
8

(x, y, z) = (1, 1, 1)

Indeed it may be easily checked that

P[X = 1] = P[Y = 1] = P[Z = 1] = 1
2

and that X, Y, Z are not independent because, for example,

P[X = 0 , Y = 1 , Z = 0] = 3
16
6= 2−3 = P[X = 0] · P[Y = 1] · P[Z = 0].


