Probability
Solutions to Exam B, Fall 2014

Solution Q1:

(A) Suppose the brothers of the soldiers are $\{1,2, \ldots, n\}$. Let $\phi:\{1, \ldots, n\} \rightarrow$ $\{1, \ldots, n\}$ be a function such that $\phi(j)$ is the soldier the receives the package from j.

Thus, our probability space is uniform measure on all possible $\phi:\{1, \ldots, n\} \rightarrow$ $\{1, \ldots, n\}$ that are $1-1$ and onto.

The size of the space is thus $n!$.
The probability of A_{k} is thus the number of ϕ such that $\phi(k)=k$ divided by $n!$. There are $(n-1)!$ many such ϕ, so

$$
\mathbb{P}\left[A_{k}\right]=\frac{(n-1)!}{n!}=\frac{1}{n} .
$$

Also, $A_{k} \cap A_{j}$ is the set of all functions ϕ such that $\phi(k)=k, \phi(j)=j$.
There are $(n-2)$! such functions, so:

$$
\mathbb{P}\left[A_{k} \cap A_{j}\right]=\frac{(n-2)!}{n!}=\frac{1}{n(n-1)}
$$

(B) Note that

$$
X=\sum_{k=1}^{n} \mathbf{1}_{A_{k}}
$$

So

$$
\mathbb{E}[X]=\sum_{k=1}^{n} \mathbb{P}\left[A_{k}\right]=n \frac{1}{n}=1
$$

(C) We use the Pythagorean Theorem:

$$
\operatorname{Var}[X]=\operatorname{Var}\left[\sum_{k=1}^{n} \mathbf{1}_{A_{k}}\right]=\sum_{k=1}^{n} \operatorname{Var}\left[\mathbf{1}_{A_{k}}\right]+\sum_{k \neq j} \operatorname{Cov}\left(\mathbf{1}_{A_{k}}, \mathbf{1}_{A_{j}}\right)
$$

It it immediate that

$$
\operatorname{Var}\left[\mathbf{1}_{A_{k}}\right]=\mathbb{P}\left[A_{k}\right]-\mathbb{P}\left[A_{k}\right]^{2}=\frac{1}{n}\left(1-\frac{1}{n}\right)=\frac{n-1}{n^{2}}
$$

Also, for $j \neq k$,

$$
\begin{aligned}
\operatorname{Cov}\left(\mathbf{1}_{A_{k}}, \mathbf{1}_{A_{j}}\right) & =\mathbb{E}\left[\mathbf{1}_{A_{k}} \mathbf{1}_{A_{j}}\right]-\mathbb{E}\left[\mathbf{1}_{A_{k}}\right] \cdot \mathbb{E}\left[\mathbf{1}_{A_{j}}\right] \\
& =\mathbb{P}\left[A_{k} \cap A_{j}\right]-\mathbb{P}\left[A_{k}\right] \cdot \mathbb{P}\left[A_{j}\right]=\frac{1}{n(n-1)}-\frac{1}{n^{2}}
\end{aligned}
$$

Summing everything,

$$
\operatorname{Var}[X]=\frac{n-1}{n}+1-\frac{n(n-1)}{n^{2}}=1
$$

Solution Q2:

(A) Since $X \geq 1, Y \geq 0$ we have that $0<\frac{X}{X+Y} \leq 1$. So, if $t \leq 0$ then $F_{Z}(t)=0$ and if $t \geq 1$ then $F_{Z}(t)=1$.

Let $0<t<1$. Then, using the law of total probability and independence,

$$
\begin{aligned}
\mathbb{P}[Z \leq t] & =\mathbb{P}[X \leq t(X+Y)]=\mathbb{P}\left[Y \geq \frac{1-t}{t} X\right] \\
& =\sum_{k=1}^{\infty} \mathbb{P}\left[X=k, Y \geq \frac{1-t}{t} k\right]=\sum_{k=1}^{\infty} \mathbb{P}[X=k] \mathbb{P}\left[Y \geq \frac{1-t}{t} k\right] .
\end{aligned}
$$

Since Y is continuous,

$$
\begin{aligned}
\mathbb{P}[Z \leq t] & =\sum_{k=1}^{\infty}(1-p)^{k-1} p \cdot e^{-\lambda \frac{1-t}{t} k} \\
& =p \cdot e^{-\lambda \frac{1-t}{t}} \cdot \frac{1}{1-(1-p) e^{-\lambda \frac{1-t}{t}}} \\
& =\frac{p}{e^{-\lambda} \cdot e^{\lambda / t}+p-1} .
\end{aligned}
$$

We conclude that

$$
F_{Z}(t)= \begin{cases}0 & t \leq 0 \\ \phi(t) & 0<t<1 \\ 1 & t \geq 1\end{cases}
$$

where

$$
\phi(t)=\frac{p}{e^{-\lambda} e^{\lambda / t}+p-1} \quad t \in(0,1) .
$$

(B) Note that ϕ is differentiable on $(0,1)$. Also note that $\phi(0)=0$ and $\phi(1)=1$. If we define

$$
f_{Z}(t)= \begin{cases}0 & t \notin(0,1) \\ \phi^{\prime}(t) & t \in(0,1)\end{cases}
$$

then we have by the fundamental theorem of calculus, for any $t \in(0,1)$,

$$
\int_{-\infty}^{t} f_{Z}(s) d s=\int_{0}^{t} \phi^{\prime}(s) d s=\phi(t)-\phi(0)=\phi(t)=F_{Z}(t)
$$

For $t \geq 1$,

$$
\int_{-\infty}^{t} f_{Z}(s) d s=\int_{0}^{1} \phi^{\prime}(s) d s=\phi(1)-\phi(0)=1=F_{Z}(t)
$$

For $t<0$,

$$
\int_{-\infty}^{t} f_{Z}(s) d s=0=F_{Z}(t)
$$

So Z is absolutely continuous with density f_{Z}.

Solution Q3:

(A) Let $A_{n}=\left\{\left|X_{n}-Y_{n}\right|>2^{-n}\right\}$. Since $\sum_{n} \mathbb{P}\left[A_{n}\right]<\infty$, by Borel-Cantelli (first lemma),

$$
\mathbb{P}\left[\limsup _{n} A_{n}\right]=\mathbb{P}\left[A_{n} \text { i.o. }\right]=0
$$

That is,

$$
\mathbb{P}\left[\exists n: \forall k \geq n \quad A_{k}^{c}\right]=\mathbb{P}\left[\bigcup_{n} \bigcap_{k \geq n} A_{k}^{c}\right]=\mathbb{P}\left[\lim \inf A_{n}^{c}\right]=1
$$

Note that if $\omega \in \bigcup_{n} \bigcap_{k \geq n} A_{k}^{c}$, then there exists n such that for all $k \geq n$ we have $\left|X_{n}(\omega)-Y_{n}(\omega)\right| \leq 2^{-k}$. Thus, for such ω,
$\sum_{m=1}^{\infty}\left|X_{m}(\omega)-Y_{m}(\omega)\right| \leq \sum_{m=1}^{n-1}\left|X_{m}(\omega)-Y_{m}(\omega)\right|+\sum_{m=n}^{\infty} 2^{-m} \leq \sum_{m=1}^{n-1}\left|X_{m}(\omega)-Y_{m}(\omega)\right|+2^{-(n-1)}<\infty$.
So we conclude that for any $\omega \in \bigcup_{n} \bigcap_{k \geq n} A_{k}^{c}$ we have that the sum $\sum_{m=1}^{\infty}\left(X_{m}(\omega)-Y_{m}(\omega)\right)$ converges absolutely.

Thus, the event $\lim \inf A_{n}^{c}$ implies the event that $\sum_{m}\left(X_{m}-Y_{m}\right)$ converges. So

$$
\mathbb{P}\left[\sum_{m}\left(X_{m}-Y_{m}\right) \text { converges }\right] \geq \mathbb{P}\left[\lim \inf A_{n}^{c}\right]=1
$$

(B) Let A be the event that $\sum_{m}\left(X_{m}-Y_{m}\right)$ converges. In (A) we saw that $\mathbb{P}[A]=1$. Let B be the event $\left\{Y_{n} \rightarrow Y\right\}$. We are given that $\mathbb{P}[B]=1$. So $\mathbb{P}[A \cap B]=1$.

Now, if $\omega \in A \cap B$ then the sum $\sum_{m}\left(X_{m}(\omega)-Y_{m}(\omega)\right)$ converges. So $X_{m}(\omega)-Y_{m}(\omega) \rightarrow 0$. But also, $Y_{m}(\omega) \rightarrow Y(\omega)$. So we must have that $X_{m}(\omega) \rightarrow Y(\omega)$. Thus, $A \cap B$ implies the event $\left\{X_{m} \rightarrow Y\right\}$. Hence,

$$
\mathbb{P}\left[X_{m} \rightarrow Y\right] \geq \mathbb{P}[A \cap B]=1
$$

So $\left(X_{n}\right)_{n}$ converges a.s. to Y.

