Probability

Solutions to Exam B, Fall 2013

Solution Q1:

(A) The total mass of a density function is 1 , so

$$
1=\int_{-\infty}^{\infty} f_{Y}(s) d s=\int_{0}^{1} C s^{2} d s=C \frac{1}{3},
$$

implying that $C=3$.
For $\mathbb{E}[Y]$ we have

$$
\mathbb{E}[Y]=\int_{-\infty}^{\infty} s f_{y}(s) d s=\int_{0}^{1} 3 s^{3} d s=\frac{3}{4}
$$

For $\mathbb{E}[X]$ we use the fact that

$$
f_{X, Y}(t, s)= \begin{cases}s^{-1} e^{-t / s} \cdot 3 s^{2} & \text { for } s \in(0,1), t \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

So

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} t f_{X, Y}(t, s) d t d s=\int_{0}^{1} 3 s^{2} \int_{0}^{\infty} s^{-1} t e^{-t / s} d t d s
$$

The inner integral is exactly the expectation of $\operatorname{Exp}\left(s^{-1}\right)$, which is s. So

$$
\mathbb{E}[X]=\int_{0}^{1} 3 s^{2} \cdot s d s=\frac{3}{4}
$$

(B) First we compute $\mathbb{E}[X Y]$ and $\mathbb{E}\left[Y^{2}\right]$ and $\mathbb{E}\left[X^{2}\right]$.

As in the previous item,

$$
\begin{aligned}
\mathbb{E}[X Y] & =\in \int t s f_{X, Y}(t, s) d t d s=\int_{0}^{1} 3 s^{3} \int_{0}^{\infty} t s^{-1} e^{-t / s} d t d s \\
& =\int_{0}^{1} 3 s^{4} d s=\frac{3}{5}
\end{aligned}
$$

$$
\begin{gathered}
\mathbb{E}\left[Y^{2}\right]=\int_{0}^{1} 3 s^{4} d s=\frac{3}{5} \\
\mathbb{E}\left[X^{2}\right]=\iint t^{2} f_{X, Y}(t, s) d t d s=\int_{0}^{1} 3 s^{2} \int_{0}^{\infty} t^{2} s^{-1} e^{-t / s} d t d s,
\end{gathered}
$$

the inner integral is the second moment of $\operatorname{Exp}\left(s^{-1}\right)$. If $Z \sim \operatorname{Exp}\left(s^{-1}\right)$ then

$$
\mathbb{E}\left[Z^{2}\right]=\operatorname{Var}[Z]+(\mathbb{E}[Z])^{2}=2 s^{2}
$$

so plugging this into the inner integral for every $s \in(0,1)$,

$$
\mathbb{E}\left[X^{2}\right]=\int_{0}^{1} 6 s^{4} d s=\frac{6}{5}
$$

Finally, we combine all the above to get

$$
\begin{gathered}
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y]=\frac{3}{5}-\frac{3}{4} \cdot \frac{3}{4}=\frac{3}{80} \\
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}(X, Y)=\frac{6}{5}-\frac{9}{16}+\frac{3}{5}-\frac{9}{16}+2 \cdot \frac{3}{80}=\frac{60}{80}=\frac{3}{4} . \\
\operatorname{Cov}(X-Y, Y)=\operatorname{Cov}(X, Y)-\operatorname{Cov}(Y, Y)=\operatorname{Cov}(X, Y)-\operatorname{Var}[Y] \\
=\frac{3}{80}-\frac{3}{5}+\frac{9}{16}=0 .
\end{gathered}
$$

(C) Take $X \sim \operatorname{Exp}(\lambda)$. We prove the claim by induction on n.

For $n=0$ the claim is immediate because $\mathbb{E}\left[X^{0}\right]=1$.
Assume the claim for n. We compute for $n+1$: Using integration by parts, with the functions $u(t)=t^{n+1}$ and $v(t)=\lambda e^{-\lambda t}$, we obtain

$$
\begin{aligned}
\mathbb{E}\left[X^{n+1}\right] & =\int_{0}^{\infty} t^{n+1} \lambda e^{-\lambda t} d t=-\left.t^{n+1} e^{-\lambda t}\right|_{0} ^{\infty}+\int_{0}^{\infty}(n+1) t^{n} e^{-\lambda t} d t \\
& =0+(n+1) \lambda^{-1} \int_{0}^{\infty} t^{n} \lambda e^{-\lambda t} d t=(n+1) \lambda^{-1} \mathbb{E}\left[X^{n}\right]=(n+1)!\lambda^{-(n+1)}
\end{aligned}
$$

So we have shown by induction that

$$
\mathbb{E}\left[X^{n}\right]=n!\lambda^{-n}
$$

Solution Q2:

(A) First we compute the distribution function $F_{Z}(t)$. For any $t \in \mathbb{R}$, by the law of totally probability (with the partition into disjoint events $\{Y=0\},\{Y=1\}$)

$$
\begin{aligned}
F_{Z}(t) & =\mathbb{P}[Z \leq t]=\mathbb{P}[-X \leq t, Y=0]+\mathbb{P}[X \leq t, Y=1] \\
& =\mathbb{P}[X \geq-t] \cdot \mathbb{P}[Y=0]+\mathbb{P}[X \leq t] \cdot \mathbb{P}[Y=1]=\frac{1}{2}\left(1-F_{X}(-t)\right)+\frac{1}{2} F_{X}(t),
\end{aligned}
$$

where we have used that X, Y are independent, and that X is continuous.
Since $X \sim \operatorname{Exp}(\lambda)$, we have that

$$
F_{Z}(t)= \begin{cases}\frac{1+1-e^{-\lambda t}}{2}=1-\frac{1}{2} e^{-\lambda t} & \text { for } t \geq 0 \\ \frac{1}{2} e^{\lambda t} & \text { for } t<0\end{cases}
$$

Now, we can choose $f_{Z}(t)=\frac{1}{2} \lambda e^{-\lambda|t|}$, and check that for $t \leq 0$,

$$
\int_{-\infty}^{t} f_{Z}(s) d s=\int_{-\infty}^{t} \frac{1}{2} \lambda e^{\lambda s} d s=\left.\frac{1}{2} e^{\lambda s}\right|_{-\infty} ^{t}=\frac{1}{2} e^{\lambda t}
$$

and for $t \geq 0$,

$$
\int_{-\infty}^{t} f_{Z}(s) d s=\int_{-\infty}^{0} \frac{1}{2} \lambda e^{\lambda s} d s+\int_{0}^{t} \frac{1}{2} \lambda e^{-\lambda s} d s=\frac{1}{2}-\left.\frac{1}{2} e^{-\lambda s}\right|_{0} ^{t}=1-\frac{1}{2} e^{-\lambda t}
$$

Since we get that

$$
F_{Z}(t)=\int_{-\infty}^{t} f_{Z}(s) d s
$$

for all $t \in \mathbb{R}$, we have that Z is absolutely continuous with density f_{Z} given above.
(B) The long way is to calculate $\int t^{2} f_{Z}(t) d t$ directly.

However, note that $Z^{2}=(2 Y-1)^{2} X^{2}$ and since $2 Y-1 \in\{-1,1\}$ we have that $Z^{2}=X^{2}$. Since $X^{2} \sim \operatorname{Exp}(\lambda)$,

$$
\mathbb{E}\left[X^{2}\right]=\operatorname{Var}[X]+(\mathbb{E}[X])^{2}=\frac{2}{\lambda^{2}}
$$

If we were to go the long way, it would not be so terrible, as:

$$
\begin{aligned}
\mathbb{E}\left[Z^{2}\right] & =\int_{-\infty}^{\infty} t^{2} f_{Z}(t) d t=\int_{-\infty}^{0} t^{2} \frac{1}{2} \lambda e^{\lambda t} d t+\int_{0}^{\infty} t^{2} \frac{1}{2} \lambda e^{-\lambda t} d t \\
& =2 \int_{0}^{\infty} \frac{1}{2} \lambda e^{-\lambda t} d t=\mathbb{E}\left[X^{2}\right]
\end{aligned}
$$

Even an explicit integration by parts here is not so terrible.
(C) We use linearity of expectation and the fact that X, Y are independent, so any functions of X and of Y are independent. Specifically, $(2 Y-1)$ and X^{2} are independent and $(2 Y-1)$ and X are independent. Thus,

$$
\begin{aligned}
\mathbb{E}[Z X] & =\mathbb{E}\left[(2 Y-1) X^{2}\right]=\mathbb{E}[(2 Y-1)] \cdot \mathbb{E}\left[X^{2}\right] \\
\mathbb{E}[Z] & =\mathbb{E}[(2 Y-1) X]=\mathbb{E}[(2 Y-1)] \cdot \mathbb{E}[X]
\end{aligned}
$$

(This already shows that $\operatorname{Cov}(Z, X)=\mathbb{E}[(2 Y-1)] \cdot \operatorname{Var}[X]$. .) Now, since

$$
\mathbb{E}[(2 Y-1)]=2 \mathbb{E}[Y]-1=0
$$

we get that $\mathbb{E}[Z X]=\mathbb{E}[Z]=0$ and

$$
\operatorname{Cov}(Z, X)=\mathbb{E}[Z X]-\mathbb{E}[Z] \cdot \mathbb{E}[X]=0
$$

(So X, Z are uncorrelated.)
We claim that X, Z are not independent. To show this, it suffices to find t, s such that

$$
\mathbb{P}[X \leq t, Z \leq s] \neq \mathbb{P}[X \leq t] \cdot \mathbb{P}[Z \leq s]
$$

Let us choose $t=s=1$. Then,

$$
\begin{aligned}
\mathbb{P}[X \leq 1, Z \leq 1] & =\mathbb{P}[X \leq 1,-X \leq 1, Y=0]+\mathbb{P}[X \leq 1, Y=1] \\
& =\frac{1}{2} \mathbb{P}[-1 \leq X \leq 1]+\frac{1}{2} \mathbb{P}[X \leq 1]=1-e^{-\lambda}
\end{aligned}
$$

However, $\mathbb{P}[X \leq 1]=1-e^{-\lambda}$ and (using the distribution function computed above)

$$
\mathbb{P}[Z \leq 1]=F_{Z}(1)=1-\frac{1}{2} e^{-\lambda}
$$

Multiplying we get

$$
\mathbb{P}[X \leq 1] \cdot \mathbb{P}[Z \leq 1]=1-e^{-\lambda}-\frac{1}{2} e^{-\lambda}+\frac{1}{2} e^{-2 \lambda} \neq 1-e^{-\lambda}=\mathbb{P}[X \leq 1, Z \leq 1]
$$

because $e^{-2 \lambda} \neq e^{-\lambda}$ for any $\lambda>0$.

Solution Q3:

(A) For every n let $Z_{n}=X_{n}-Y_{n}$. So $\left(Z_{n}\right)_{n}$ are independent, all have finite variance

$$
\sigma^{2}:=\operatorname{Var}\left[Z_{n}\right]=\operatorname{Var}\left[X_{n}\right]+\operatorname{Var}\left[Y_{n}\right]=\frac{1-p}{p^{2}}+\frac{1}{p^{2}},
$$

and $\mathbb{E}\left[Z_{n}\right]=\frac{1}{p}-\frac{1}{p}=0$.
By the Central Limit Theorem,

$$
\frac{1}{\sqrt{n} \sigma} \sum_{k=1}^{n} Z_{n} \xrightarrow{\mathcal{D}} N(0,1)
$$

In other words,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{P}\left[\sum_{k=1}^{n} X_{k}>\sum_{k=1}^{n} Y_{k}\right] & =\lim _{n \rightarrow \infty} \mathbb{P}\left[\sum_{k=1}^{n} Z_{k}>0\right] \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left[\frac{1}{\sqrt{n} \sigma} \sum_{k=1}^{n} Z_{k}>0\right]=\mathbb{P}[N(0,1)>0]
\end{aligned}
$$

Since $s \mapsto e^{-s^{2} / 2}$ is an even function,

$$
\mathbb{P}[N(0,1)>0]=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-s^{2} / 2} d s=\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-s^{2} / 2} d s=\frac{1}{2}
$$

Which completes the proof.
(B) Y_{1} is absolutely continuous, so

$$
\mathbb{E}\left[e^{\alpha Y_{1}}\right]=\int_{-\infty}^{\infty} e^{\alpha t} f_{Y}(t) d t=\int_{0}^{\infty} e^{\alpha t} p e^{-p t} d t
$$

If $\alpha-p \geq 0$ this is $\mathbb{E}\left[e^{\alpha Y_{1}}\right]=\infty$. For $\alpha<p$ this becomes

$$
\mathbb{E}\left[e^{\alpha Y_{1}}\right]=\left.\frac{p}{\alpha-p} e^{(\alpha-p) t}\right|_{0} ^{\infty}=\frac{p}{p-\alpha} .
$$

(C) Since X_{1}, Y_{1} are independent, we have that so are $e^{\alpha Y_{1}}, e^{\alpha X_{1}}$. So $\mathbb{E}\left[e^{\alpha\left(X_{1}+Y_{1}\right)}\right]=$ $\mathbb{E}\left[e^{\alpha X_{1}}\right] \cdot \mathbb{E}\left[e^{\alpha Y_{1}}\right]$.

We have already seen that if $\alpha \geq p$ then $\mathbb{E}\left[e^{\alpha Y_{1}}\right]=\infty$, so since $e^{\alpha X_{1}} \geq 0$, we have that if $\alpha \geq p$ then $\mathbb{E}\left[e^{\alpha\left(X_{1}+Y_{1}\right)}\right]=\infty$.

We turn to the case $\alpha<p$. Then, since X_{1} is discrete with range $\{1,2, \ldots$,$\} ,$

$$
\mathbb{E}\left[e^{\alpha X_{1}}\right]=\sum_{k=1}^{\infty} e^{\alpha k} p(1-p)^{k-1}=\frac{p}{1-p} \sum_{k=1}^{\infty}\left((1-p) e^{\alpha}\right)^{k}
$$

If $e^{\alpha} \geq \frac{1}{1-p}$ then this is $\mathbb{E}\left[e^{\alpha X_{1}}\right]=\infty$. If $e^{\alpha}(1-p)<1$ then this becomes

$$
\mathbb{E}\left[e^{\alpha X_{1}}\right]=\frac{p}{1-p} \cdot \frac{(1-p) e^{\alpha}}{1-(1-p) e^{\alpha}}=\frac{p e^{\alpha}}{1-(1-p) e^{\alpha}} .
$$

To sum up,

$$
\mathbb{E}\left[e^{\alpha\left(X_{1}+Y_{1}\right)}\right]= \begin{cases}\frac{p^{2} e^{\alpha}}{(p-\alpha)\left(1-(1-p) e^{\alpha}\right)} & \text { if } \alpha<p \text { and } e^{\alpha}<\frac{1}{1-p}, \\ \infty & \text { otherwise }\end{cases}
$$

Solution Q4:

(A)

$$
\frac{\binom{k-1}{n}+\binom{k-1}{n-1}}{\binom{k}{n}}=\frac{k-n}{k}+\frac{n}{k}=1
$$

(B) We prove this by induction on k. The base case is $k=n+1$. Then the claim is just

$$
\binom{n-1}{n-1}=\binom{n}{n}
$$

which is obviously true.
Assume the claim holds for some $k \geq n+1$. For $k+1$ we compute using the induction hypothesis, and using (A),

$$
\sum_{m=n}^{k}\binom{m-1}{n-1}=\sum_{m=n}^{k-1}\binom{m-1}{n-1}+\binom{k-1}{n-1}=\binom{k-1}{n}+\binom{k-1}{n-1}=\binom{k}{n}
$$

which proves the induction step.
(C) We prove the claim by induction on n. The base case $n=1$ is just $\mathbb{P}\left[X_{1}=\right.$ $k]=p(1-p)^{k-1}$ for integer $k \geq 1$ and 0 otherwise, which is obvious since $X_{1} \sim \operatorname{Geo}(p)$.

Assume the claim is true for n. Let $S=S_{n}$ and $X=X_{n+1}$. We need to show the induction step, which is to show that
$\mathbb{P}[S+X=k]= \begin{cases}\binom{k-1}{n} p^{n+1}(1-p)^{k-n-1} & \text { for an integer } k \geq n+1 \\ 0 & \text { otherwise }\end{cases}$
Indeed, by the induction hypothesis, S has range $\{n, n+1, n+2, \ldots$,$\} .$ Since S, X are independent, the law of total probability (or the discrete convolution identity shown in class) gives
$\mathbb{P}[S+X=k]=\sum_{m=n}^{\infty} \mathbb{P}[S=m, X=k-m]=\sum_{m=n}^{\infty} \operatorname{Pr}[S=m] \mathbb{P}[X=k-m]$.
If k is not an integer this is 0 . Since the range of X is the positive integers, we get for any integer $k \leq n, \mathbb{P}[S+X=k]=0$ and for any integer $k \geq n+1$, again by the induction hypothesis,

$$
\mathbb{P}[S+X=k]=\sum_{m=n}^{k-1}\binom{m-1}{n-1} p^{n}(1-p)^{m-n} \cdot p(1-p)^{k-m-1}=p^{n+1}(1-p)^{k-(n+1)} \sum_{m=n}^{k-1}\binom{m-1}{n-1}
$$

That is, using (B),

$$
\mathbb{P}\left[S_{n+1}=k\right]=\binom{k-1}{n} p^{n+1}(1-p)^{k-(n+1)}
$$

for all integers $k \geq n+1$ and $\mathbb{P}\left[S_{n+1}=k\right]=0$ otherwise. This proves the induction step.
(D) Let $Y_{n}=X_{n}-\mathbb{E}\left[X_{n}\right]=X_{n}-\frac{1}{p}$. So $\mathbb{E}\left[Y_{n}\right]=0$ and $\left(Y_{n}\right)_{n}$ are independent with finite variance. The law of large numbers tells us that

$$
\frac{1}{n} \sum_{k=1}^{n} Y_{k} \xrightarrow{\text { a.s. }} 0 .
$$

For any ω, the sequence $\frac{1}{n} S_{n}(\omega) \rightarrow C$ if and only if

$$
\frac{1}{n} \sum_{k=1}^{n} Y_{k}(\omega)=\frac{1}{n} S_{n}(\omega)-\frac{1}{p} \rightarrow C-\frac{1}{p}
$$

Thus, by the law of large numbers $\frac{1}{n} S_{n} \xrightarrow{\text { a.s. }} \frac{1}{p}$.

