
Probability

Solutions to Exam B, Fall 2013

Solution Q1:

(A) The total mass of a density function is 1, so

1 =

∫ ∞
−∞

fY (s)ds =

∫ 1

0

Cs2ds = C 1
3
,

implying that C = 3.

For E[Y ] we have

E[Y ] =

∫ ∞
−∞

sfy(s)ds =

∫ 1

0

3s3ds = 3
4
.

For E[X] we use the fact that

fX,Y (t, s) =

s
−1e−t/s · 3s2 for s ∈ (0, 1), t ≥ 0

0 otherwise

So

E[X] =

∫ ∞
−∞

∫ ∞
−∞

tfX,Y (t, s)dtds =

∫ 1

0

3s2
∫ ∞
0

s−1te−t/sdtds

The inner integral is exactly the expectation of Exp(s−1), which is s. So

E[X] =

∫ 1

0

3s2 · sds = 3
4
.

(B) First we compute E[XY ] and E[Y 2] and E[X2].

As in the previous item,

E[XY ] =∈
∫
tsfX,Y (t, s)dtds =

∫ 1

0

3s3
∫ ∞
0

ts−1e−t/sdtds

=

∫ 1

0

3s4ds = 3
5
.
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E[Y 2] =

∫ 1

0

3s4ds = 3
5
.

E[X2] =

∫ ∫
t2fX,Y (t, s)dtds =

∫ 1

0

3s2
∫ ∞
0

t2s−1e−t/sdtds,

the inner integral is the second moment of Exp(s−1). If Z ∼ Exp(s−1) then

E[Z2] = Var[Z] + (E[Z])2 = 2s2,

so plugging this into the inner integral for every s ∈ (0, 1),

E[X2] =

∫ 1

0

6s4ds = 6
5
.

Finally, we combine all the above to get

Cov(X, Y ) = E[XY ]− E[X] · E[Y ] = 3
5
− 3

4
· 3
4

= 3
80
.

Var[X + Y ] = Var[X] + Var[Y ] + 2 Cov(X, Y ) = 6
5
− 9

16
+ 3

5
− 9

16
+ 2 · 3

80
= 60

80
= 3

4
.

Cov(X − Y, Y ) = Cov(X, Y )− Cov(Y, Y ) = Cov(X, Y )− Var[Y ]

= 3
80
− 3

5
+ 9

16
= 0.

(C) Take X ∼ Exp(λ). We prove the claim by induction on n.

For n = 0 the claim is immediate because E[X0] = 1.

Assume the claim for n. We compute for n + 1: Using integration by

parts, with the functions u(t) = tn+1 and v(t) = λe−λt, we obtain

E[Xn+1] =

∫ ∞
0

tn+1λe−λtdt = −tn+1e−λt
∣∣∣∞
0

+

∫ ∞
0

(n+ 1)tne−λtdt

= 0 + (n+ 1)λ−1
∫ ∞
0

tnλe−λtdt = (n+ 1)λ−1 E[Xn] = (n+ 1)!λ−(n+1).

So we have shown by induction that

E[Xn] = n!λ−n.
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Solution Q2:

(A) First we compute the distribution function FZ(t). For any t ∈ R, by the law

of totally probability (with the partition into disjoint events {Y = 0} , {Y = 1})

FZ(t) = P[Z ≤ t] = P[−X ≤ t, Y = 0] + P[X ≤ t, Y = 1]

= P[X ≥ −t] · P[Y = 0] + P[X ≤ t] · P[Y = 1] = 1
2
(1− FX(−t)) + 1

2
FX(t),

where we have used that X, Y are independent, and that X is continuous.

Since X ∼ Exp(λ), we have that

FZ(t) =


1+1−e−λt

2
= 1− 1

2
e−λt for t ≥ 0

1
2
eλt for t < 0.

Now, we can choose fZ(t) = 1
2
λe−λ|t|, and check that for t ≤ 0,∫ t

−∞
fZ(s)ds =

∫ t

−∞

1
2
λeλsds = 1

2
eλs
∣∣∣t
−∞

= 1
2
eλt,

and for t ≥ 0,∫ t

−∞
fZ(s)ds =

∫ 0

−∞

1
2
λeλsds+

∫ t

0

1
2
λe−λsds = 1

2
− 1

2
e−λs

∣∣∣t
0

= 1− 1
2
e−λt.

Since we get that

FZ(t) =

∫ t

−∞
fZ(s)ds

for all t ∈ R, we have that Z is absolutely continuous with density fZ given

above.

(B) The long way is to calculate
∫
t2fZ(t)dt directly.

However, note that Z2 = (2Y − 1)2X2 and since 2Y − 1 ∈ {−1, 1} we

have that Z2 = X2. Since X2 ∼ Exp(λ),

E[X2] = Var[X] + (E[X])2 =
2

λ2
.
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If we were to go the long way, it would not be so terrible, as:

E[Z2] =

∫ ∞
−∞

t2fZ(t)dt =

∫ 0

−∞
t2 1

2
λeλtdt+

∫ ∞
0

t2 1
2
λe−λtdt

= 2

∫ ∞
0

1
2
λe−λtdt = E[X2].

Even an explicit integration by parts here is not so terrible.

(C) We use linearity of expectation and the fact that X, Y are independent, so

any functions of X and of Y are independent. Specifically, (2Y − 1) and

X2 are independent and (2Y − 1) and X are independent. Thus,

E[ZX] = E[(2Y − 1)X2] = E[(2Y − 1)] · E[X2],

E[Z] = E[(2Y − 1)X] = E[(2Y − 1)] · E[X].

(This already shows that Cov(Z,X) = E[(2Y − 1)] · Var[X].) Now, since

E[(2Y − 1)] = 2E[Y ]− 1 = 0

we get that E[ZX] = E[Z] = 0 and

Cov(Z,X) = E[ZX]− E[Z] · E[X] = 0.

(So X,Z are uncorrelated.)

We claim that X,Z are not independent. To show this, it suffices to find

t, s such that

P[X ≤ t, Z ≤ s] 6= P[X ≤ t] · P[Z ≤ s].

Let us choose t = s = 1. Then,

P[X ≤ 1, Z ≤ 1] = P[X ≤ 1,−X ≤ 1, Y = 0] + P[X ≤ 1, Y = 1]

= 1
2
P[−1 ≤ X ≤ 1] + 1

2
P[X ≤ 1] = 1− e−λ.
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However, P[X ≤ 1] = 1 − e−λ and (using the distribution function com-

puted above)

P[Z ≤ 1] = FZ(1) = 1− 1
2
e−λ.

Multiplying we get

P[X ≤ 1] · P[Z ≤ 1] = 1− e−λ − 1
2
e−λ + 1

2
e−2λ 6= 1− e−λ = P[X ≤ 1, Z ≤ 1],

because e−2λ 6= e−λ for any λ > 0.

Solution Q3:

(A) For every n let Zn = Xn − Yn. So (Zn)n are independent, all have finite

variance

σ2 := Var[Zn] = Var[Xn] + Var[Yn] = 1−p
p2

+ 1
p2
,

and E[Zn] = 1
p
− 1

p
= 0.

By the Central Limit Theorem,

1√
nσ

n∑
k=1

Zn
D−→ N(0, 1).

In other words,

lim
n→∞

P[
n∑
k=1

Xk >

n∑
k=1

Yk] = lim
n→∞

P[
n∑
k=1

Zk > 0]

= lim
n→∞

P[ 1√
nσ

n∑
k=1

Zk > 0] = P[N(0, 1) > 0].

Since s 7→ e−s
2/2 is an even function,

P[N(0, 1) > 0] =

∫ ∞
0

1√
2π
e−s

2/2ds = 1
2

∫ ∞
−∞

1√
2π
e−s

2/2ds = 1
2
.

Which completes the proof.
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(B) Y1 is absolutely continuous, so

E[eαY1 ] =

∫ ∞
−∞

eαtfY (t)dt =

∫ ∞
0

eαtpe−ptdt.

If α− p ≥ 0 this is E[eαY1 ] =∞. For α < p this becomes

E[eαY1 ] = p
α−pe

(α−p)t
∣∣∣∞
0

= p
p−α .

(C) SinceX1, Y1 are independent, we have that so are eαY1 , eαX1 . So E[eα(X1+Y1)] =

E[eαX1 ] · E[eαY1 ].

We have already seen that if α ≥ p then E[eαY1 ] =∞, so since eαX1 ≥ 0,

we have that if α ≥ p then E[eα(X1+Y1)] =∞.

We turn to the case α < p. Then, since X1 is discrete with range

{1, 2, . . . , },

E[eαX1 ] =
∞∑
k=1

eαkp(1− p)k−1 = p
1−p

∞∑
k=1

((1− p)eα)k .

If eα ≥ 1
1−p then this is E[eαX1 ] =∞. If eα(1− p) < 1 then this becomes

E[eαX1 ] =
p

1− p
· (1− p)eα

1− (1− p)eα
=

peα

1− (1− p)eα
.

To sum up,

E[eα(X1+Y1)] =


p2eα

(p−α)(1−(1−p)eα) if α < p and eα < 1
1−p ,

∞ otherwise .

Solution Q4:

(A) (
k−1
n

)
+
(
k−1
n−1

)(
k
n

) =
k − n
k

+
n

k
= 1
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(B) We prove this by induction on k. The base case is k = n + 1. Then the

claim is just (
n− 1

n− 1

)
=

(
n

n

)
which is obviously true.

Assume the claim holds for some k ≥ n+ 1. For k+ 1 we compute using

the induction hypothesis, and using (A),

k∑
m=n

(
m− 1

n− 1

)
=

k−1∑
m=n

(
m− 1

n− 1

)
+

(
k − 1

n− 1

)
=

(
k − 1

n

)
+

(
k − 1

n− 1

)
=

(
k

n

)
,

which proves the induction step.

(C) We prove the claim by induction on n. The base case n = 1 is just P[X1 =

k] = p(1− p)k−1 for integer k ≥ 1 and 0 otherwise, which is obvious since

X1 ∼ Geo(p).

Assume the claim is true for n. Let S = Sn and X = Xn+1. We need to

show the induction step, which is to show that

P[S +X = k] =


(
k−1
n

)
pn+1(1− p)k−n−1 for an integer k ≥ n+ 1

0 otherwise

Indeed, by the induction hypothesis, S has range {n, n+ 1, n+ 2, . . . , }.

Since S,X are independent, the law of total probability (or the discrete

convolution identity shown in class) gives

P[S +X = k] =
∞∑
m=n

P[S = m,X = k −m] =
∞∑
m=n

Pr[S = m]P[X = k −m].

If k is not an integer this is 0. Since the range of X is the positive integers,

we get for any integer k ≤ n, P[S + X = k] = 0 and for any integer

k ≥ n+ 1, again by the induction hypothesis,

P[S+X = k] =
k−1∑
m=n

(
m− 1

n− 1

)
pn(1−p)m−n·p(1−p)k−m−1 = pn+1(1−p)k−(n+1)

k−1∑
m=n

(
m− 1

n− 1

)
.
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That is, using (B),

P[Sn+1 = k] =

(
k − 1

n

)
pn+1(1− p)k−(n+1),

for all integers k ≥ n + 1 and P[Sn+1 = k] = 0 otherwise. This proves the

induction step.

(D) Let Yn = Xn − E[Xn] = Xn − 1
p
. So E[Yn] = 0 and (Yn)n are independent

with finite variance. The law of large numbers tells us that

1
n

n∑
k=1

Yk
a.s.−→ 0.

For any ω, the sequence 1
n
Sn(ω)→ C if and only if

1

n

n∑
k=1

Yk(ω) = 1
n
Sn(ω)− 1

p
→ C − 1

p
.

Thus, by the law of large numbers 1
n
Sn

a.s.−→ 1
p
.


