Probability

Solutions to Exam C, Fall 2014

Solution Q1:

(A) If g is any measurable function then

$$
\mathbb{E}[g(U)]=\int_{-\infty}^{\infty} g(t) f_{U}(t) d t=\int_{-\pi / 2}^{\pi / 2} \frac{1}{\pi} g(t) d t .
$$

So we want a measurable function $g:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ such that $\int_{-\pi / 2}^{\pi / 2} g(t) d t=$ ∞.

One such function could be $g(x)=\frac{1}{x^{2}}$ for $x \neq 0$ and $g(0)=0$. This is indeed a measurable function: for any $0<t \in \mathbb{R}$,

$$
g^{-1}[t, \infty)=\left\{x \neq 0: x^{2} \leq \frac{1}{t}\right\}=\left[-\frac{1}{\sqrt{t}} 0\right) \cup\left(0, \frac{1}{\sqrt{t}}\right]
$$

and for $t \leq 0$ we have that $g^{-1}[t, \infty)=\mathbb{R}$.
Now, using a change of variables,

$$
\begin{aligned}
\mathbb{E}[g(U)] & =\frac{1}{\pi} \int_{-\pi / 2}^{0} \frac{1}{t^{2}} d t+\frac{1}{\pi} \int_{0}^{\pi / 2} \frac{1}{t^{2}} d t=\frac{2}{\pi} \int_{0}^{\pi / 2} \frac{1}{t^{2}} d t \\
& =\left.\frac{2}{\pi} \cdot\left(-\frac{1}{t}\right)\right|_{0} ^{\pi / 2}=\infty
\end{aligned}
$$

Actually, if we want to formally justify this integration, we could consider the sequence $X_{n}=g_{n}(U)$ where $g_{n}(x)=g(x) \mathbf{1}_{\left\{|x|>n^{-1}\right\}}$. These are all measurable as a measurable function times an indicator. Also, $g_{n} \leq g_{n+1}$ so $\left(X_{n}\right)_{n}$ is a monotone sequence that converges to $g(U)$. Also, as above,

$$
\mathbb{E}\left[X_{n}\right]=\frac{2}{\pi} \int_{n^{-1}}^{\pi / 2} \frac{1}{t^{2}} d t=\frac{2}{\pi} \cdot\left(n-\frac{2}{\pi}\right)
$$

By monotone convergence,

$$
\mathbb{E}[g(U)]=\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]=\infty
$$

(B) A simple possibility is to take $g(x)=x+1$. This is a continuous function, so also measurable. Then,

$$
\mathbb{E}[g(U)]=\mathbb{E}[U]+1=1
$$

Another possibility is to take $g(x)=\frac{12}{\pi^{2}} x^{2}$ which is measurable since it is continuous. Since $\mathbb{E}[U]=0$ we have that $\mathbb{E}\left[U^{2}\right]=\operatorname{Var}[U]=\frac{\pi^{2}}{12}$. So

$$
\mathbb{E}[g(U)]=\frac{12}{\pi^{2}} \mathbb{E}\left[U^{2}\right]=1
$$

(C) Define $g(x)=\frac{1}{x^{3}}$ if $x \neq 0$ and $g(0)=0$. This is a measurable function since: For $t>0$,

$$
g^{-1}[t, \infty)=\left\{x>0: x^{3} \leq \frac{1}{t}\right\}=\left(0, t^{-1 / 3}\right]
$$

For $t=0$,

$$
g^{-1}[0, \infty)=\{x: x \geq 0\}=[0, \infty)
$$

For $t<0$,

$$
\begin{aligned}
g^{-1}[t, \infty) & =g^{-1}[t, 0) \biguplus g^{-1}[0, \infty)=\left\{x<0:|x|^{3} \geq \frac{1}{|t|}\right\} \biguplus[0, \infty) \\
& =\left\{-x: x \geq \frac{1}{|t|^{1 / 3}}\right\} \biguplus[0, \infty)=\left(-\infty,-\frac{1}{|t|^{1 / 3}}\right] \biguplus[0, \infty)
\end{aligned}
$$

Let $X=g(U)$. Then,

$$
X^{+}=\max \{g(U), 0\}= \begin{cases}g(U) & U \geq 0 \\ 0 & U \leq 0\end{cases}
$$

Similarly,

$$
X^{-}=\max \{-g(U), 0\}= \begin{cases}-g(U) & U \leq 0 \\ 0 & U \geq 0\end{cases}
$$

Thus, for $g^{+}(x)=g(x) \mathbf{1}_{\{x \geq 0\}}$ and $g^{-}(x)=-g(x) \mathbf{1}_{\{x \leq 0\}}$, we have that $X^{+}=g^{+}(U)$ and $X^{-}=g^{-}(U)$.

Thus,

$$
\begin{aligned}
\mathbb{E}\left[X^{+}\right] & =\int_{-\infty}^{\infty} g^{+}(t) f_{U}(t) d t=\frac{1}{\pi} \int_{0}^{\pi / 2} t^{-3} d t \\
& =\left.\frac{1}{2 \pi} \cdot\left(-t^{-2}\right)\right|_{0} ^{\pi / 2}=\infty \\
\mathbb{E}\left[X^{-}\right] & =\int_{-\infty}^{\infty} g^{-}(t) f_{U}(t) f t=-\frac{1}{\pi} \int_{-\pi / 2}^{0} t^{-3} d t \\
& =\left.\frac{1}{2 \pi} \cdot t^{-2}\right|_{-\pi / 2} ^{0}=\infty
\end{aligned}
$$

So $\mathbb{E}\left[X^{+}\right]=\mathbb{E}\left[X^{-}\right]=\infty$ and thus $\mathbb{E}[X]$ is not defined.

Solution Q2:

(A) For every n, we have that $S_{n}=\sum_{k=1}^{n} X_{k}$ is a function of X_{1}, \ldots, X_{n}. Since N is independent of X_{1}, \ldots, X_{n} this implies that N, S_{n} are independent.
(B) Since N, S_{n} are independent, also $S_{n}, \mathbf{1}_{\{N=n\}}$ are independent, as functions of independent random variables. Thus, they are uncorrelated and

$$
\mathbb{E}\left[S_{n} \mathbf{1}_{\{N=n\}}\right]=\mathbb{E}\left[S_{n}\right] \mathbb{E}\left[\mathbf{1}_{\{N=n\}}\right]=\sum_{k=1}^{n} \mathbb{E}\left[X_{k}\right] \cdot \mathbb{P}[N=n]=\mu n \mathbb{P}[N=n]
$$

(C) Using the law of total probability, since the range of N is in the positive integers,

$$
1=\sum_{n=1}^{\infty} \mathbf{1}_{\{N=n\}}
$$

For every n define $K_{n}=S_{n} \mathbf{1}_{\{N=n\}}$. We have seen that $\mathbb{E}\left[K_{n}\right]=\mu n \mathbb{P}[N=$ $n]$. Note that

$$
S_{N}=\sum_{n=1}^{\infty} S_{N} \mathbf{1}_{\{N=n\}}=\sum_{n=1}^{\infty} K_{n}
$$

Set

$$
R_{n}=\sum_{j=1}^{n} K_{j} .
$$

Since all X_{k} are non-negative, also S_{k} are non-negative, and thus K_{j} are all non-negative. Hence $R_{n} \leq R_{n+1}$ and also $R_{n} \nearrow S_{N}$.

By monotone convergence and linearity of expectation we now obtain that

$$
\begin{aligned}
\mathbb{E}\left[S_{N}\right] & =\lim _{n \rightarrow \infty} \mathbb{E}\left[R_{n}\right]=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \mathbb{E}\left[K_{j}\right] \\
& =\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \mu j \mathbb{P}[N=j]=\mu \cdot \sum_{j=1}^{\infty} j \mathbb{P}[N=j] \\
& =\mu \cdot \mathbb{E}[N]
\end{aligned}
$$

Solution Q3:

(A) Fix $\varepsilon>0$. Let $A_{n}=\left\{\left|X_{n}-Y_{n}\right|>\varepsilon\right\}$. Let $\omega \in \Omega$ be such that $Z(\omega)>\varepsilon$. By definition of $\lim \sup$ this implies that for every n there exists $k \geq n$ such that $\left|X_{n}(\omega)-Y_{n}(\omega)\right|>\varepsilon$. That is, $\omega \in \bigcap_{n} \bigcup_{k \geq n} A_{k}=\lim \sup _{n} A_{n}$. So we have shown that

$$
\{Z>\varepsilon\} \subseteq \limsup _{n \rightarrow \infty} A_{n}
$$

Now, we are given that $\sum_{n} \mathbb{P}\left[A_{n}\right]<\infty$. The first Borel-Cantelli lemma states that in this case $\mathbb{P}\left[\lim \sup _{n} A_{n}\right]=0$. Hence $\mathbb{P}[Z>\varepsilon] \leq \mathbb{P}\left[\limsup { }_{n} A_{n}\right]=$ 0.

Since $\varepsilon>0$ was arbitrary, we are done.
(B) Let A be the event $\left\{Y_{n} \rightarrow Y\right\}$. We are given that $\mathbb{P}[A]=1$.

Let B be the event $\left\{\left|X_{n}-Y_{n}\right| \rightarrow 0\right\}$. In part (A) we have seen that for any $k>0$,

$$
\mathbb{P}\left[\limsup _{n \rightarrow \infty}\left|X_{n}-Y_{n}\right|>k^{-1}\right]=0 .
$$

Thus,

$$
\mathbb{P}\left[\limsup _{n \rightarrow \infty}\left|X_{n}-Y_{n}\right|>0\right] \leq \sum_{k=1}^{\infty} \mathbb{P}\left[\limsup _{n \rightarrow \infty}\left|X_{n}-Y_{n}\right|>k^{-1}\right]=0
$$

So with probability 1 we have that $\lim \sup _{n}\left|X_{n}-Y_{n}\right|=0$ which is to say that $\mathbb{P}[B]=1$.

Now, if $\omega \in B \cap A$ then
$\lim \sup \left|X_{n}(\omega)-Y(\omega)\right| \leq \lim \sup \left|X_{n}(\omega)-Y_{n}(\omega)\right|+\lim \sup \left|Y_{n}(\omega)-Y(\omega)\right|=0$.
So the event $A \cap B$ implies the event $\left\{X_{n} \rightarrow Y\right\}$. Thus,

$$
\mathbb{P}\left[X_{n} \rightarrow Y\right] \geq \mathbb{P}[A \cap B]=1
$$

and $\left(X_{n}\right)_{n}$ converges to Y a.s.

