
Probability

Solutions to Exam C, Fall 2013

Solution Q1:

(A) We need to show that for any continuity point of FL, we have FXn(t) →

FL(t). (Since L is discrete, with range {0, 1, . . . , } the continuity points of

FL are R \ {0, 1, . . . , }.)

For any t < 0, because Xn, L take only non-negative values,

FXn(t) = P[Xn ≤ t] = 0 = P[L ≤ t].

Let t > 0. If n > t then,

FXn(t) =

btc∑
k=0

P[Xn = k],

so by the assumption,

lim
n→∞

FXn(t) =

btc∑
k=0

P[L = k] = P[L ≤ t].

For t = 0 we have that because the range of Xn is {0, 1, . . . , n},

FXn(0) = P[Xn ≤ 0] = P[Xn = 0]→ P[L = 0] = P[L ≤ 0] = FL(0).

Thus, FXn(t)→ FL(t) for all t, and specifically, Xn
D−→ L.

(B) Note that the range of Bn is {0, 1, . . . , n} and the range of P is {0, 1, . . .}

as in (A).

Let p = λ
n
. For any non-negative integer k we have that if n ≥ k then

P[Bn = k] =

(
n

k

)
pk(1− p)n−k =

n!

(n− k)!nk
· λ

k

k!
·
(
1− λ

n

)n · (1− λ
n

)−k
→ e−λ · λ

k

k!
= P[P = k].
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By (A) this implies that Bn
D−→ P .

Solution Q2:

(A) Since X2k is non-negative, by Markov’s inequality,

P[X ≥ 1 + ε] = P[X2k ≥ (1 + ε)2k] ≤ E[X2k](1 + ε)−2k ≤M(1 + ε)−2k.

Taking k →∞ we get 0 on the right-hand side.

(B) We have

{X > 1} =
⋃
n

{
X > 1 + n−1

}
.

Thus, by Boole’s inequality (union bound)

P[X > 1] ≤
∑
n

P[X > 1 + n−1] = 0,

by (A).

(C) Take M = 1. Since{
Y 2k > 1

}
⊆ {|Y | > 1} = {−1 ≤ Y ≤ 1}c ,

we have that

P[Y 2k > 1] = 0.

Thus,

E[Y 2k] = E[Y 2k1{Y 2k≤1}] ≤ 1.

Solution Q3:

(A) For Z we have: If r 6∈ [−1, 1],

fZ(r) =

∫ ∫
fX,Y,Z(t, s, r)dtds = 0.

For r ∈ [−1, 1],

fZ(r) =

∫ ∫
fX,Y,Z(t, s, r)dtds =

∫ 1

−1

∫ √1−s2
−
√
1−s2

1
2π
dtds

∫ 1

−1

1
π

√
1− s2ds = 1

2
.
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So

fZ(r) =


1
2

r ∈ [−1, 1]

0 r 6∈ [−1, 1]

As for X, we have: If t 6∈ [−1, 1] then t2 > 1 so

fX(t) =

∫ ∫
fX,Y,Z(t, s, r)dsdr = 0.

If t ∈ [−1, 1] then

fX(t) =

∫ 1

−1

∫ √1−t2
−
√
1−t2

1
2π
dsdr =

2 ·
√

1− t2
π

.

So

fX(t) =


2
π
·
√

1− t2 t ∈ [−1, 1]

0 t 6∈ [−1, 1]

(B) By (A) we have that Z ∼ U [−1, 1] so Var[Z] = 22

12
= 1

3
. This can also be

easily calculated directly, since

E[Z] =

∫ 1

−1

1
2
rdr = 0,

and so

Var[Z] = E[Z2] =

∫ 1

−1

1
2
r2dr = 1

2
· r3

3

∣∣∣1
−1

= 1
3
.

(C) First we calculate fX,Y . If t2 + s2 > 1 then

fX,Y (t, s) =

∫
fX,Y,Z(t, s, r)dr = 0.

For t2 + s2 ≤ 1,

fX,Y (t, s) =

∫ 1

−1

1
2π
dr = 1

π
.
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Thus,

E[XY ] =

∫ ∫
tsfX,Y (t, s)dtds =

∫ 1

−1

∫ √1−s2
−
√
1−s2

1
π
tsdtds

=

∫ 1

−1

s
π

(∫ √1−s2
−
√
1−s2

t dt

)
ds = 0.

Also,

E[Y ] =

∫ ∫
sfX,Y (t, s)dtds =

∫ 1

−1

s
π

(∫ √1−s2
−
√
1−s2

dt

)
ds

=

∫ 1

−1

s
π
· 2
√

1− s2 ds = 0,

because the function in the integral is an odd function, and the integral is

symmetric around 0.

E[X] can be computed similarly, although we may also use (A) to com-

pute

E[X] =

∫
tfX(t)dt = 2

π

∫ 1

−1
t ·
√

1− t2 dt = 0,

again because the function is an odd function and the integral is symmetric

around 0.

Altogether,

Cov(X, Y ) = E[XY ]− E[X] · E[Y ] = 0.

Solution Q4:
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(A) It is immediate that Z is discrete with range in {0, 1, . . . , }. For any non-

negative integer k, using the independence of X, Y ,

P[Z = k] =
∞∑
n=0

P[X = n, Z = k] =
∞∑
n=0

P[X = n, Y = k − n]

=
k∑

n=0

P[X = k] · P[Y = k − n] =
k∑

n=0

e−α α
k

k!
· e−β βk−n

(k−n)!

= e−(α+β) 1
k!
·

k∑
n=0

(
k

n

)
αkβk−n = e−(α+β)

(α + β)k

k!
.

This is exactly the density of Poi(α + β).

(B) For any t ∈ R, by independence of x and Y ,

P[Z > t] = P[X > t, Y > t] = P[X > t] · P[Y > t] = (1− FX(t)) · (1− FY (t)).

Thus,

P[Z > t] =

1 t < 0

e−αt · e−βt t ≥ 0

That is,

FZ(t) = 1− P[Z > t] =

0 t < 0

1− e−(α+β)t t ≥ 0

This is exactly the distribution function of Exp(α + β).


