Probability

Solutions to Exam C, Fall 2013

Solution Q1:

(A) We need to show that for any continuity point of F_{L}, we have $F_{X_{n}}(t) \rightarrow$ $F_{L}(t)$. (Since L is discrete, with range $\{0,1, \ldots$,$\} the continuity points of$ F_{L} are $\mathbb{R} \backslash\{0,1, \ldots$,$\} .)$
For any $t<0$, because X_{n}, L take only non-negative values,

$$
F_{X_{n}}(t)=\mathbb{P}\left[X_{n} \leq t\right]=0=\mathbb{P}[L \leq t] .
$$

Let $t>0$. If $n>t$ then,

$$
F_{X_{n}}(t)=\sum_{k=0}^{\lfloor[t\rfloor} \mathbb{P}\left[X_{n}=k\right],
$$

so by the assumption,

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(t)=\sum_{k=0}^{[t]} \mathbb{P}[L=k]=\mathbb{P}[L \leq t] .
$$

For $t=0$ we have that because the range of X_{n} is $\{0,1, \ldots, n\}$,

$$
F_{X_{n}}(0)=\mathbb{P}\left[X_{n} \leq 0\right]=\mathbb{P}\left[X_{n}=0\right] \rightarrow \mathbb{P}[L=0]=\mathbb{P}[L \leq 0]=F_{L}(0) .
$$

Thus, $F_{X_{n}}(t) \rightarrow F_{L}(t)$ for all t, and specifically, $X_{n} \xrightarrow{\mathcal{D}} L$.
(B) Note that the range of B_{n} is $\{0,1, \ldots, n\}$ and the range of P is $\{0,1, \ldots\}$ as in (A).
Let $p=\frac{\lambda}{n}$. For any non-negative integer k we have that if $n \geq k$ then

$$
\begin{aligned}
\mathbb{P}\left[B_{n}=k\right] & =\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n!}{(n-k)!n^{k}} \cdot \frac{\lambda^{k}}{k!} \cdot\left(1-\frac{\lambda}{n}\right)^{n} \cdot\left(1-\frac{\lambda}{n}\right)^{-k} \\
& \rightarrow e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}=\mathbb{P}[P=k] .
\end{aligned}
$$

By (A) this implies that $B_{n} \xrightarrow{\mathcal{D}} P$.

Solution Q2:

(A) Since $X^{2 k}$ is non-negative, by Markov's inequality,

$$
\mathbb{P}[X \geq 1+\varepsilon]=\mathbb{P}\left[X^{2 k} \geq(1+\varepsilon)^{2 k}\right] \leq \mathbb{E}\left[X^{2 k}\right](1+\varepsilon)^{-2 k} \leq M(1+\varepsilon)^{-2 k}
$$

Taking $k \rightarrow \infty$ we get 0 on the right-hand side.
(B) We have

$$
\{X>1\}=\bigcup_{n}\left\{X>1+n^{-1}\right\}
$$

Thus, by Boole's inequality (union bound)

$$
\mathbb{P}[X>1] \leq \sum_{n} \mathbb{P}\left[X>1+n^{-1}\right]=0
$$

by (A).
(C) Take $M=1$. Since

$$
\left\{Y^{2 k}>1\right\} \subseteq\{|Y|>1\}=\{-1 \leq Y \leq 1\}^{c}
$$

we have that

$$
\mathbb{P}\left[Y^{2 k}>1\right]=0
$$

Thus,

$$
\mathbb{E}\left[Y^{2 k}\right]=\mathbb{E}\left[Y^{2 k} \mathbf{1}_{\left\{Y^{2 k} \leq 1\right\}}\right] \leq 1
$$

Solution Q3:

(A) For Z we have: If $r \notin[-1,1]$,

$$
f_{Z}(r)=\iint f_{X, Y, Z}(t, s, r) d t d s=0
$$

For $r \in[-1,1]$,

$$
f_{Z}(r)=\iint f_{X, Y, Z}(t, s, r) d t d s=\int_{-1}^{1} \int_{-\sqrt{1-s^{2}}}^{\sqrt{1-s^{2}}} \frac{1}{2 \pi} d t d s \int_{-1}^{1} \frac{1}{\pi} \sqrt{1-s^{2}} d s=\frac{1}{2}
$$

So

$$
f_{Z}(r)= \begin{cases}\frac{1}{2} & r \in[-1,1] \\ 0 & r \notin[-1,1]\end{cases}
$$

As for X, we have: If $t \notin[-1,1]$ then $t^{2}>1$ so

$$
f_{X}(t)=\iint f_{X, Y, Z}(t, s, r) d s d r=0
$$

If $t \in[-1,1]$ then

$$
f_{X}(t)=\int_{-1}^{1} \int_{-\sqrt{1-t^{2}}}^{\sqrt{1-t^{2}}} \frac{1}{2 \pi} d s d r=\frac{2 \cdot \sqrt{1-t^{2}}}{\pi}
$$

So

$$
f_{X}(t)= \begin{cases}\frac{2}{\pi} \cdot \sqrt{1-t^{2}} & t \in[-1,1] \\ 0 & t \notin[-1,1]\end{cases}
$$

(B) By (A) we have that $Z \sim U[-1,1]$ so $\operatorname{Var}[Z]=\frac{2^{2}}{12}=\frac{1}{3}$. This can also be easily calculated directly, since

$$
\mathbb{E}[Z]=\int_{-1}^{1} \frac{1}{2} r d r=0
$$

and so

$$
\operatorname{Var}[Z]=\mathbb{E}\left[Z^{2}\right]=\int_{-1}^{1} \frac{1}{2} r^{2} d r=\left.\frac{1}{2} \cdot \frac{r^{3}}{3}\right|_{-1} ^{1}=\frac{1}{3}
$$

(C) First we calculate $f_{X, Y}$. If $t^{2}+s^{2}>1$ then

$$
f_{X, Y}(t, s)=\int f_{X, Y, Z}(t, s, r) d r=0
$$

For $t^{2}+s^{2} \leq 1$,

$$
f_{X, Y}(t, s)=\int_{-1}^{1} \frac{1}{2 \pi} d r=\frac{1}{\pi}
$$

Thus,

$$
\begin{aligned}
\mathbb{E}[X Y] & =\iint t s f_{X, Y}(t, s) d t d s=\int_{-1}^{1} \int_{-\sqrt{1-s^{2}}}^{\sqrt{1-s^{2}}} \frac{1}{\pi} t s d t d s \\
& =\int_{-1}^{1} \frac{s}{\pi}\left(\int_{-\sqrt{1-s^{2}}}^{\sqrt{1-s^{2}}} t d t\right) d s=0 .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\mathbb{E}[Y] & =\iint s f_{X, Y}(t, s) d t d s=\int_{-1}^{1} \frac{s}{\pi}\left(\int_{-\sqrt{1-s^{2}}}^{\sqrt{1-s^{2}}} d t\right) d s \\
& =\int_{-1}^{1} \frac{s}{\pi} \cdot 2 \sqrt{1-s^{2}} d s=0,
\end{aligned}
$$

because the function in the integral is an odd function, and the integral is symmetric around 0 .
$\mathbb{E}[X]$ can be computed similarly, although we may also use (A) to compute

$$
\mathbb{E}[X]=\int t f_{X}(t) d t=\frac{2}{\pi} \int_{-1}^{1} t \cdot \sqrt{1-t^{2}} d t=0
$$

again because the function is an odd function and the integral is symmetric around 0 .

Altogether,

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y]=0
$$

Solution Q4:

(A) It is immediate that Z is discrete with range in $\{0,1, \ldots$,$\} . For any non-$ negative integer k, using the independence of X, Y,

$$
\begin{aligned}
\mathbb{P}[Z=k] & =\sum_{n=0}^{\infty} \mathbb{P}[X=n, Z=k]=\sum_{n=0}^{\infty} \mathbb{P}[X=n, Y=k-n] \\
& =\sum_{n=0}^{k} \mathbb{P}[X=k] \cdot \mathbb{P}[Y=k-n]=\sum_{n=0}^{k} e^{-\alpha} \frac{\alpha^{k}}{k!} \cdot e^{-\beta} \frac{\beta^{k-n}}{(k-n)!} \\
& =e^{-(\alpha+\beta)} \frac{1}{k!} \cdot \sum_{n=0}^{k}\binom{k}{n} \alpha^{k} \beta^{k-n}=e^{-(\alpha+\beta)} \frac{(\alpha+\beta)^{k}}{k!} .
\end{aligned}
$$

This is exactly the density of $\operatorname{Poi}(\alpha+\beta)$.
(B) For any $t \in \mathbb{R}$, by independence of x and Y,

$$
\mathbb{P}[Z>t]=\mathbb{P}[X>t, Y>t]=\mathbb{P}[X>t] \cdot \mathbb{P}[Y>t]=\left(1-F_{X}(t)\right) \cdot\left(1-F_{Y}(t)\right) .
$$

Thus,

$$
\mathbb{P}[Z>t]= \begin{cases}1 & t<0 \\ e^{-\alpha t} \cdot e^{-\beta t} & t \geq 0\end{cases}
$$

That is,

$$
F_{Z}(t)=1-\mathbb{P}[Z>t]= \begin{cases}0 & t<0 \\ 1-e^{-(\alpha+\beta) t} & t \geq 0\end{cases}
$$

This is exactly the distribution function of $\operatorname{Exp}(\alpha+\beta)$.

