Probability

Solutions to Exam A, Fall 2014

Solution Q1:

(A) First of all, if $t \leq 0$ then

$$
\begin{aligned}
\mathbb{P}[X \leq t] & =\mathbb{P}[X \leq t, P=0]+\mathbb{P}[X \leq t, P>0] \\
& =\mathbb{P}[1 \leq t, P=0]+\mathbb{P}\left[\min \left\{U_{1}, \ldots, U_{P}\right\} \leq t, P>0\right] \\
& \leq \sum_{n>0} \mathbb{P}\left[P=n, \exists 1 \leq j \leq n: U_{j} \leq 0\right] \leq 0,
\end{aligned}
$$

Because $\mathbb{P}\left[U_{n} \leq t\right]=0$ for all $t \leq 0$.
If $t \geq 1$, then since $U_{n} \leq 1$ for all n, we have that $X \leq 1$ by definition.
Thus, $\mathbb{P}[X \leq t]=1$ for such $t \geq 1$.
Now let $0<t<1$. Then, using the fact that $P,\left(U_{n}\right)_{n}$ are all independent,

$$
\begin{aligned}
\mathbb{P}[X>t] & =\sum_{n=0}^{\infty} \mathbb{P}[X>t, P=n]=\mathbb{P}[P=0,1>t]+\sum_{n>0} \mathbb{P}\left[P=n, \min \left\{U_{1}, \ldots, U_{n}\right\}>t\right] \\
& =\mathbb{P}[P=0]+\sum_{n>0} \mathbb{P}[P=n] \cdot \mathbb{P}\left[\forall 1 \leq j \leq n, U_{j}>t\right] \\
& =\mathbb{P}[P=0]+\sum_{n>0} \mathbb{P}[P=n] \cdot(1-t)^{n}=\sum_{n=0}^{\infty} \mathbb{P}[P=n](1-t)^{n} \\
& =\sum_{n=0}^{\infty} e^{-\lambda} \frac{(1-t)^{n} \lambda^{n}}{n!}=e^{-\lambda} e^{\lambda(1-t)}=e^{-\lambda t}
\end{aligned}
$$

We conclude that:

$$
F_{X}(t)= \begin{cases}0 & t \leq 0 \\ 1-e^{-\lambda t} & 0 \leq t<1 \\ 1 & t \geq 1\end{cases}
$$

X is not a continuous random variable since F_{X} is not continuous at $t=1$.
(B) If $t \leq 0$ then

$$
\mathbb{P}[Y \leq t] \leq \mathbb{P}[E \leq t]+\mathbb{P}[1 \leq t]=0
$$

If $t \geq 1$ then since $Y \leq 1$ by definition, $\mathbb{P}[Y \leq t]=1$ for any such $t \geq 1$.
Let $0<t<1$. Then,

$$
\begin{aligned}
\mathbb{P}[Y>t] & =\mathbb{P}[Y>t, E>1]+\mathbb{P}[Y>t, E \leq 1]=\mathbb{P}[1>t, E>1]+\mathbb{P}[E>t, E \leq 1] \\
& =\mathbb{P}[E>1]+\mathbb{P}[t<E \leq 1]=\mathbb{P}[E>t]=e^{-\lambda t}
\end{aligned}
$$

Thus,

$$
F_{Y}(t)= \begin{cases}0 & t \leq 0 \\ 1-e^{-\lambda t} & 0 \leq t<1 \\ 1 & t \geq 1\end{cases}
$$

Note that $F_{Y}=F_{X}$.
(C) Note that $F_{X}=F_{Y}$, that is X, Y have the same distribution. Also, $X \geq$ $0, Y \geq 0$ so their expectation is well defined. Moreover, since $0 \leq X, Y \leq 1$ we have that $0 \leq \mathbb{E}[X]=\mathbb{E}[Y] \leq 1$. So $X-Y$ has a well defined finite expectation, and by linearity $\mathbb{E}[X-Y]=\mathbb{E}[X]-\mathbb{E}[Y]=0$.

Solution Q2:

(A) Let's take $g(x)=\mathbf{1}_{\{x>0\}}-\mathbf{1}_{\{x \leq 0\}}, h(x)=|x|$. So g is measurable as a combination of indicators and h is measurable as a continuous function.

Let us calculate the joint distribution function of $X=g(U), Y=h(U)$:
Note that $X \in\{-1,1\}$ by definition and $Y \in[0,1]$ by definition. So for $t<-1$, since $F_{X}(t)=0$,

$$
F_{X, Y}(t, s)=\mathbb{P}[X \leq t, Y \leq s]=0=F_{X}(t) \cdot F_{Y}(s)
$$

and for $s<0$, since $F_{Y}(s)=0$,

$$
F_{X, Y}(t, s)=\mathbb{P}[X \leq t, Y \leq s]=0=F_{X}(t) \cdot F_{Y}(s)
$$

Moreover, if $s \geq 1$ then since $Y \leq 1$,

$$
F_{X, Y}(t, s)=\mathbb{P}[X \leq t, Y \leq s]=\mathbb{P}[X \leq t]=F_{X}(t) \cdot F_{Y}(s)
$$

Similarly, if $t \geq 1$ then since $X \leq 1$,

$$
F_{X, Y}(t, s)=\mathbb{P}[X \leq t, Y \leq s]=\mathbb{P}[Y \leq s]=F_{X}(t) \cdot F_{Y}(s)
$$

Now, if $-1 \leq t<1,0 \leq s<1$ then

$$
\begin{aligned}
F_{X, Y}(t, s) & =\mathbb{P}[X=-1, Y \leq s]=\mathbb{P}[U \leq 0,|U| \leq s]=\mathbb{P}[-s \leq U \leq 0] \\
& =\frac{s}{2}=\frac{1}{2} \cdot s=\mathbb{P}[U \leq 0] \cdot \mathbb{P}[-s \leq U \leq s] \\
& =\mathbb{P}[X=-1] \cdot \mathbb{P}[Y \leq s]=F_{X}(t) \cdot F_{Y}(s)
\end{aligned}
$$

So we have show that for any t, s we have

$$
F_{X, Y}(t, s)=F_{X}(t) \cdot F_{Y}(s)
$$

That is, X, Y are independent.
(B) Take $g(x)=x, h(x)=x^{2}$. Then g, h are measurable as continuous functions.

We calculate $\operatorname{Cov}(g(U), h(U))=\operatorname{Cov}\left(U, U^{2}\right)$:

$$
\mathbb{E}[g(U) h(U)]=\mathbb{E}\left[U^{3}\right]=\int_{-1}^{1} t^{3} \frac{1}{2} d t=\left.\frac{1}{8} t^{4}\right|_{-1} ^{1}=0
$$

and $\mathbb{E}[g(U)]=\mathbb{E}[U]=0$ so $\operatorname{Cov}(g(U), h(U))=0$ and $g(U), h(U)$ are uncorrelated.

We claim that $g(U), h(U)$ are not independent. If they were independent, then $g(U)^{2}, h(U)$ would be uncorrelated. That is, $0=\operatorname{Cov}\left(U^{2}, U^{2}\right)=$ $\operatorname{Var}\left[U^{2}\right]$. So $U^{2}=\mathbb{E}\left[U^{2}\right]=\operatorname{Var}[U]=\frac{1}{3}$ a.s. However, since U is continuous,

$$
\mathbb{P}\left[U^{2}=\frac{1}{3}\right]=\mathbb{P}\left[U=\frac{1}{\sqrt{3}}\right]+\mathbb{P}\left[U=-\frac{1}{\sqrt{3}}\right]=0
$$

contradiction!
(*) A second solution:
Let's take $g(x)=\cos (2 \pi x), h(x)=\sin (2 \pi x)$. Let $X=g(U), Y=h(U)$. We calculate $\operatorname{Cov}(X, Y)$:

Since U is absolutely continuous,

$$
\begin{aligned}
\mathbb{E}[X Y] & =\mathbb{E}[\cos (2 \pi U) \sin (2 \pi U)]=\int_{-\infty}^{\infty} \cos (2 \pi t) \sin (2 \pi t) f_{U}(t) d t \\
& =\int_{-1}^{1} \cos (2 \pi t) \sin (2 \pi t) \frac{1}{2} d t=\frac{1}{4} \int_{-1}^{1} \sin (4 \pi t) d t \\
& =-\left.\frac{1}{16 \pi} \cos (4 \pi t)\right|_{-1} ^{1}=0 .
\end{aligned}
$$

Also,

$$
\mathbb{E}[X]=\int_{-1}^{1} \cos (2 \pi t) \frac{1}{2} d t=-\left.\frac{1}{4 \pi} \sin (2 \pi t)\right|_{-1} ^{1}=0
$$

So

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=0
$$

Hence, X, Y are uncorrelated.
We claim that X, Y are not independent. Indeed, assume for a contradiction that they were independent. Then X^{2}, Y^{2} are also independent. However, $X^{2}+Y^{2}=1$ by definition, so

$$
\mathbb{P}\left[X^{2} \leq \frac{1}{4}, Y^{2} \leq \frac{1}{4}\right]=0 \neq \mathbb{P}\left[X^{2} \leq \frac{1}{4}\right] \cdot \mathbb{P}\left[Y^{2} \leq \frac{1}{4}\right],
$$

because

$$
\begin{aligned}
& \mathbb{P}\left[X^{2} \leq \frac{1}{4}\right]=\mathbb{P}\left[\cos (2 \pi U) \in\left[-\frac{1}{2}, \frac{1}{2}\right]\right]>0 \\
& \mathbb{P}\left[Y^{2} \leq \frac{1}{4}\right]=\mathbb{P}\left[\sin (2 \pi U) \in\left[-\frac{1}{2}, \frac{1}{2}\right]\right]>0
\end{aligned}
$$

(C) This is the easiest case. Just take $g(x)=h(x)=x$. If $\operatorname{Cov}(g(U), h(U))=0$ this implies that $\operatorname{Var}[U]=0$ which implies that $U=\mathbb{E}[U]=0$ a.s. Since U is not constant, this is impossible.

Solution Q3:

(A) Let X_{k} denote the amount the gambler wins at game k. So $\left(X_{k}\right)_{k}$ are independent, and $\mathbb{P}\left[X_{k}=1\right]=p, \mathbb{P}\left[X_{k}=-1\right]=q$.

At game k the gambler can either win or loose one Shekel. Thus, after $2 k$ games, the gambler must have an even number of Shekel, and after $2 k+1$ games he must have an odd number of Shekel.

That is

$$
\sum_{j=1}^{2 k} X_{j} \text { is even } \quad \sum_{j=1}^{2 k+1} X_{j} \text { is odd }
$$

Set $S_{k}=\sum_{j=1}^{k} X_{j}$. This is the total winnings up to game k.
Consider the event A_{k} that for all $j \leq k$ we have $S_{2 j}=0$. On this event, since $S_{2 j+1}$ are always odd, it must be that $S_{2 j+1} \in\{-1,1\}$ for all $j \leq k$. Thus, A_{k} implies that the gambler has not left after game $2 k$.

On the other hand, if the gambler has not left after game $2 k$, it must be that $S_{2 j}=0$ for all $j \leq k$, otherwise one of these would be -2 or 2 , and he would have left.

We have shown that A_{k} is the event that the gambler has not left after game $2 k$, which is exactly the event $\{X>2 k\}$.

Also, note that $A_{k} \in \sigma\left(X_{1}, \ldots, X_{2 k}\right)$. Thus, $X_{2 k+1}, X_{2 k+2}$ are independent of A_{k}. So,

$$
\begin{aligned}
\mathbb{P}\left[A_{k+1}\right] & =\mathbb{P}\left[S_{2(k+1)}=0, \forall j \leq k S_{2 j}=0\right]=\mathbb{P}\left[X_{2 k+1}+X_{2 k+2}=0, \forall j \leq k S_{2 j}=0\right] \\
& =\mathbb{P}\left[X_{2 k+1}+X_{2 k+2}=0\right] \cdot \mathbb{P}\left[A_{k}\right] \\
& =\mathbb{P}\left[X_{2 k+1}=1, X_{2 k+2}=-1\right] \cdot \mathbb{P}\left[A_{k}\right]+\mathbb{P}\left[X_{2 k+1}=-1, X_{2 k+2}=1\right] \cdot \mathbb{P}\left[A_{k}\right] \\
& =2 p q \mathbb{P}\left[A_{k}\right]
\end{aligned}
$$

Continuing inductively, we get that

$$
\mathbb{P}[X>2 k]=\mathbb{P}\left[A_{k}\right]=(2 p q)^{k} .
$$

Note that the gambler can only leave after an even number of games, because after an odd number of games the gambler has an odd number of Shekel.

Thus,

$$
R_{X}=\{2 k: k=1,2, \ldots\} \quad \text { and } \quad \mathbb{P}[X>2 k]=(2 p q)^{k} .
$$

If we define $Y=X / 2$ we get that $R_{Y}=\{1,2, \ldots$,$\} and \mathbb{P}[Y>k]=$ $(2 p q)^{k}$. So $Y \sim \operatorname{Geo}(1-2 p q)$.

Thus, for $k=1,2, \ldots$,

$$
\mathbb{P}[X=2 k]=\mathbb{P}[Y=k]=(1-2 p q)(2 p q)^{k-1}
$$

and $\mathbb{P}[X=t]=0$ for any other t.
(*) Without recognizing the geometric distribution this is still not hard: for any positive integer k,

$$
\begin{aligned}
\mathbb{P}[X=2 k] & =\mathbb{P}[\{X>2(k-1)\} \backslash\{X>2 k\}]=\mathbb{P}[X>2(k-1)]-\mathbb{P}[X>2 k] \\
& =(2 p q)^{k-1}-(2 p q)^{k}=(1-2 p q)(2 p q)^{k-1} .
\end{aligned}
$$

(B) The event that the gambler leaves with 2 Shekel, is the event that at the last two games the gambler earned 1 Shekel in each. Using the law of total probability,
$\mathbb{P}[$ gambler leaves with 2 Shekel $]=\sum_{k=1}^{\infty} \mathbb{P}[X=2 k$, gambler leaves with 2 Shekel $]$

$$
=\sum_{k=1}^{\infty} \mathbb{P}\left[X>2(k-1), X_{2 k-1}=1, X_{2 k}=1\right] .
$$

Since $\{X>2(k-1)\} \in \sigma\left(X_{1}, \ldots, X_{2(k-1)}\right)$ we have by independence, $\mathbb{P}[$ gambler leaves with 2 Shekel $]=\sum_{k=1}^{\infty} \mathbb{P}[X>2(k-1)] \cdot p^{2}$ $=\sum_{k=1}^{\infty}(2 p q)^{k-1} p^{2}=\frac{p^{2}}{1-2 p q}$.

