
Probability

Solutions to Exam A, Fall 2014

Solution Q1:

(A) First of all, if t ≤ 0 then

P[X ≤ t] = P[X ≤ t, P = 0] + P[X ≤ t, P > 0]

= P[1 ≤ t, P = 0] + P[min {U1, . . . , UP} ≤ t, P > 0]

≤
∑
n>0

P[P = n,∃ 1 ≤ j ≤ n : Uj ≤ 0] ≤ 0,

Because P[Un ≤ t] = 0 for all t ≤ 0.

If t ≥ 1, then since Un ≤ 1 for all n, we have that X ≤ 1 by definition.

Thus, P[X ≤ t] = 1 for such t ≥ 1.

Now let 0 < t < 1. Then, using the fact that P, (Un)n are all indepen-

dent,

P[X > t] =
∞∑
n=0

P[X > t, P = n] = P[P = 0, 1 > t] +
∑
n>0

P[P = n,min {U1, . . . , Un} > t]

= P[P = 0] +
∑
n>0

P[P = n] · P[∀ 1 ≤ j ≤ n , Uj > t]

= P[P = 0] +
∑
n>0

P[P = n] · (1− t)n =
∞∑
n=0

P[P = n](1− t)n

=
∞∑
n=0

e−λ
(1− t)nλn

n!
= e−λeλ(1−t) = e−λt.

We conclude that:

FX(t) =


0 t ≤ 0

1− e−λt 0 ≤ t < 1

1 t ≥ 1

1
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X is not a continuous random variable since FX is not continuous at

t = 1.

(B) If t ≤ 0 then

P[Y ≤ t] ≤ P[E ≤ t] + P[1 ≤ t] = 0.

If t ≥ 1 then since Y ≤ 1 by definition, P[Y ≤ t] = 1 for any such t ≥ 1.

Let 0 < t < 1. Then,

P[Y > t] = P[Y > t,E > 1] + P[Y > t,E ≤ 1] = P[1 > t,E > 1] + P[E > t,E ≤ 1]

= P[E > 1] + P[t < E ≤ 1] = P[E > t] = e−λt.

Thus,

FY (t) =


0 t ≤ 0

1− e−λt 0 ≤ t < 1

1 t ≥ 1.

Note that FY = FX .

(C) Note that FX = FY , that is X, Y have the same distribution. Also, X ≥

0, Y ≥ 0 so their expectation is well defined. Moreover, since 0 ≤ X, Y ≤ 1

we have that 0 ≤ E[X] = E[Y ] ≤ 1. So X − Y has a well defined finite

expectation, and by linearity E[X − Y ] = E[X]− E[Y ] = 0.

Solution Q2:

(A) Let’s take g(x) = 1{x>0} − 1{x≤0}, h(x) = |x|. So g is measurable as a

combination of indicators and h is measurable as a continuous function.

Let us calculate the joint distribution function of X = g(U), Y = h(U):

Note that X ∈ {−1, 1} by definition and Y ∈ [0, 1] by definition. So for

t < −1, since FX(t) = 0,

FX,Y (t, s) = P[X ≤ t, Y ≤ s] = 0 = FX(t) · FY (s)
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and for s < 0, since FY (s) = 0,

FX,Y (t, s) = P[X ≤ t, Y ≤ s] = 0 = FX(t) · FY (s).

Moreover, if s ≥ 1 then since Y ≤ 1,

FX,Y (t, s) = P[X ≤ t, Y ≤ s] = P[X ≤ t] = FX(t) · FY (s).

Similarly, if t ≥ 1 then since X ≤ 1,

FX,Y (t, s) = P[X ≤ t, Y ≤ s] = P[Y ≤ s] = FX(t) · FY (s).

Now, if −1 ≤ t < 1, 0 ≤ s < 1 then

FX,Y (t, s) = P[X = −1, Y ≤ s] = P[U ≤ 0, |U | ≤ s] = P[−s ≤ U ≤ 0]

= s
2

= 1
2
· s = P[U ≤ 0] · P[−s ≤ U ≤ s]

= P[X = −1] · P[Y ≤ s] = FX(t) · FY (s).

So we have show that for any t, s we have

FX,Y (t, s) = FX(t) · FY (s).

That is, X, Y are independent.

(B) Take g(x) = x, h(x) = x2. Then g, h are measurable as continuous func-

tions.

We calculate Cov(g(U), h(U)) = Cov(U,U2):

E[g(U)h(U)] = E[U3] =

∫ 1

−1
t3 1

2
dt = 1

8
t4
∣∣∣1
−1

= 0,

and E[g(U)] = E[U ] = 0 so Cov(g(U), h(U)) = 0 and g(U), h(U) are

uncorrelated.

We claim that g(U), h(U) are not independent. If they were independent,

then g(U)2, h(U) would be uncorrelated. That is, 0 = Cov(U2, U2) =

Var[U2]. So U2 = E[U2] = Var[U ] = 1
3

a.s. However, since U is continuous,

P[U2 = 1
3
] = P[U = 1√

3
] + P[U = − 1√

3
] = 0,
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contradiction!

(*) A second solution:

Let’s take g(x) = cos(2πx), h(x) = sin(2πx). Let X = g(U), Y = h(U).

We calculate Cov(X, Y ):

Since U is absolutely continuous,

E[XY ] = E[cos(2πU) sin(2πU)] =

∫ ∞
−∞

cos(2πt) sin(2πt)fU(t)dt

=

∫ 1

−1
cos(2πt) sin(2πt)1

2
dt = 1

4

∫ 1

−1
sin(4πt)dt

= − 1
16π

cos(4πt)
∣∣∣1
−1

= 0.

Also,

E[X] =

∫ 1

−1
cos(2πt)1

2
dt = − 1

4π
sin(2πt)

∣∣∣1
−1

= 0.

So

Cov(X, Y ) = E[XY ]− E[X]E[Y ] = 0.

Hence, X, Y are uncorrelated.

We claim that X, Y are not independent. Indeed, assume for a contra-

diction that they were independent. Then X2, Y 2 are also independent.

However, X2 + Y 2 = 1 by definition, so

P[X2 ≤ 1
4
, Y 2 ≤ 1

4
] = 0 6= P[X2 ≤ 1

4
] · P[Y 2 ≤ 1

4
],

because

P[X2 ≤ 1
4
] = P[cos(2πU) ∈ [−1

2
, 1
2
]] > 0,

P[Y 2 ≤ 1
4
] = P[sin(2πU) ∈ [−1

2
, 1
2
]] > 0.

(C) This is the easiest case. Just take g(x) = h(x) = x. If Cov(g(U), h(U)) = 0

this implies that Var[U ] = 0 which implies that U = E[U ] = 0 a.s. Since

U is not constant, this is impossible.
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Solution Q3:

(A) Let Xk denote the amount the gambler wins at game k. So (Xk)k are

independent, and P[Xk = 1] = p,P[Xk = −1] = q.

At game k the gambler can either win or loose one Shekel. Thus, after

2k games, the gambler must have an even number of Shekel, and after

2k + 1 games he must have an odd number of Shekel.

That is

2k∑
j=1

Xj is even
2k+1∑
j=1

Xj is odd .

Set Sk =
∑k

j=1Xj. This is the total winnings up to game k.

Consider the event Ak that for all j ≤ k we have S2j = 0. On this event,

since S2j+1 are always odd, it must be that S2j+1 ∈ {−1, 1} for all j ≤ k.

Thus, Ak implies that the gambler has not left after game 2k.

On the other hand, if the gambler has not left after game 2k, it must be

that S2j = 0 for all j ≤ k, otherwise one of these would be −2 or 2, and

he would have left.

We have shown that Ak is the event that the gambler has not left after

game 2k, which is exactly the event {X > 2k}.

Also, note that Ak ∈ σ(X1, . . . , X2k). Thus, X2k+1, X2k+2 are indepen-

dent of Ak. So,

P[Ak+1] = P[S2(k+1) = 0 , ∀ j ≤ k S2j = 0] = P[X2k+1 +X2k+2 = 0 , ∀ j ≤ k S2j = 0]

= P[X2k+1 +X2k+2 = 0] · P[Ak]

= P[X2k+1 = 1, X2k+2 = −1] · P[Ak] + P[X2k+1 = −1, X2k+2 = 1] · P[Ak]

= 2pq P[Ak].
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Continuing inductively, we get that

P[X > 2k] = P[Ak] = (2pq)k.

Note that the gambler can only leave after an even number of games,

because after an odd number of games the gambler has an odd number of

Shekel.

Thus,

RX = {2k : k = 1, 2, . . .} and P[X > 2k] = (2pq)k.

If we define Y = X/2 we get that RY = {1, 2, . . . , } and P[Y > k] =

(2pq)k. So Y ∼ Geo(1− 2pq).

Thus, for k = 1, 2, . . . ,

P[X = 2k] = P[Y = k] = (1− 2pq)(2pq)k−1

and P[X = t] = 0 for any other t.

(*) Without recognizing the geometric distribution this is still not hard:

for any positive integer k,

P[X = 2k] = P[{X > 2(k − 1)} \ {X > 2k}] = P[X > 2(k − 1)]− P[X > 2k]

= (2pq)k−1 − (2pq)k = (1− 2pq)(2pq)k−1.

(B) The event that the gambler leaves with 2 Shekel, is the event that at the

last two games the gambler earned 1 Shekel in each. Using the law of total

probability,

P[ gambler leaves with 2 Shekel ] =
∞∑
k=1

P[X = 2k, gambler leaves with 2 Shekel ]

=
∞∑
k=1

P[X > 2(k − 1), X2k−1 = 1, X2k = 1].
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Since {X > 2(k − 1)} ∈ σ(X1, . . . , X2(k−1)) we have by independence,

P[ gambler leaves with 2 Shekel ] =
∞∑
k=1

P[X > 2(k − 1)] · p2

=
∞∑
k=1

(2pq)k−1p2 =
p2

1− 2pq
.


