Probability

Solutions to Exam A, Fall 2015

Solution Q1:

(A) φ is always defined because it is the expectation of a non-negative random variable, since $e^{t X} \geq 0$ always. It is always positive, because if it was $\varphi_{X}(t)=0$, then this being the expectation of a non-negative random variable, we would have $e^{t X}=0$ a.s. But that could only happen if $X=$ $-\infty$ a.s., which is contradictory to the definition of a random variable.

Now, if X, Y are independent, then also $e^{t X}, e^{t Y}$ are independent, as functions of independent random variables. So $e^{t X}, e^{t Y}$ are uncorrelated, which is to say that

$$
\varphi_{X+Y}(t)=\mathbb{E}\left[e^{t X} \cdot e^{t Y}\right]=\mathbb{E}\left[e^{t X}\right] \cdot \mathbb{E}\left[e^{t Y}\right]=\varphi_{X}(t) \cdot \varphi_{Y}(t)
$$

Also, for any constant c,

$$
\varphi_{c X}(t)=\mathbb{E}\left[e^{c t X}\right]=\varphi_{X}(c t)
$$

(B) We have that $Y_{n} \leq Y_{n+1}$ for all n, because $Y_{n+1}-Y_{n}=\frac{t^{n+1} X^{n+1}}{(n+1)!} \geq 0$. Since $Y_{n}(\omega) \rightarrow e^{t X(\omega)}$ for any ω, we have that $Y_{n} \nearrow X$. By the Monotone Convergence Theorem, $\mathbb{E}\left[Y_{n}\right] \rightarrow \mathbb{E}\left[e^{t X}\right]=\varphi_{X}(t)$.

Now, for any n, by linearity of expectation we have that

$$
\mathbb{E}\left[Y_{n}\right]=\sum_{k=0}^{n} \frac{t^{k} \mathbb{E}\left[X^{k}\right]}{k!}
$$

Taking $n \rightarrow \infty$ on both sides of this equation gives

$$
\varphi_{X}(t)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \mathbb{E}\left[X^{k}\right] .
$$

(C) Recall that $X=X_{1}+\cdots+X_{n}$ for X_{1}, \ldots, X_{n} all independent and $X_{j} \sim$ $\operatorname{Ber}(p)$. Thus, using (A) repeatedly,

$$
\varphi_{X}(t)=\varphi_{X_{1}+\cdots+X_{n}}(t)=\varphi_{X_{1}+\cdots+X_{n-1}}(t) \cdot \varphi_{X_{n}}(t)=\cdots=\varphi_{X_{1}}(t) \cdots \varphi_{X_{n}}(t)
$$

For any j we have that

$$
\varphi_{X_{j}}(t)=e^{t 0}(1-p)+e^{t} p=1-p\left(1-e^{t}\right) .
$$

So

$$
\varphi_{X}(t)=\left(1-p\left(e^{t}-1\right)\right)^{n}
$$

Solution Q2:

(A) For any $\varepsilon>0$ we have that the event $\{|X-Y|>\varepsilon\}$ implies the event $\left\{\left|X-X_{n}\right|>\varepsilon / 2\right\} \bigcup\left\{\left|Y-X_{n}\right|>\varepsilon / 2\right\}$. (This is because $|X-Y| \leq \mid X-$ $X_{n}\left|+\left|Y-X_{n}\right|\right.$.) So for any $k>0$ we have that

$$
\mathbb{P}\left[|X-Y|>k^{-1}\right] \leq \mathbb{P}\left[\left|X-X_{n}\right|>\frac{1}{2 k}\right]+\mathbb{P}\left[\left|Y-Y_{n}\right|>\frac{1}{2 k}\right] \rightarrow 0
$$

as $n \rightarrow \infty$. Thus, $\mathbb{P}\left[|X-Y|>k^{-1}\right]=0$ for all k. However, $\{X \neq Y\} \subset$ $\bigcup_{k}\left\{|X-Y|>k^{-1}\right\}$, so Boole's inequality tells us that

$$
\mathbb{P}[X \neq Y] \leq \sum_{k} \mathbb{P}\left[|X-Y|>k^{-1}\right]=0
$$

(B) Since

$$
F_{X}(t)= \begin{cases}1 & t \geq c \\ 0 & t<c\end{cases}
$$

we know that for any $t \neq c$,

$$
\mathbb{P}\left[X_{n} \leq t\right] \rightarrow \mathbb{P}[X \leq t]=F_{X}(t)
$$

Thus, for any $\varepsilon>0$, we have that

$$
\begin{aligned}
\mathbb{P}\left[\left|X_{n}-X\right|>\varepsilon\right] & =\mathbb{P}\left[\left|X_{n}-c\right|>\varepsilon, X=c\right]+\mathbb{P}\left[\left|X_{n}-X\right|>\varepsilon, X \neq c\right] \\
& \leq \mathbb{P}\left[\left|X_{n}-c\right|>\varepsilon\right]=\mathbb{P}\left[X_{n}>c+\varepsilon\right]+\mathbb{P}\left[X_{n}<c-\varepsilon\right] \\
& \leq 1-\mathbb{P}\left[X_{n} \leq c+\varepsilon\right]+\mathbb{P}\left[X_{n} \leq c-\varepsilon\right] \rightarrow 1-F_{X}(c+\varepsilon)+F_{X}(c-\varepsilon)=0 .
\end{aligned}
$$

So $\left(X_{n}\right)_{n}$ converges to X in probability.

Solution Q3:

(A) For any $t \in[-1,1]$,

$$
f_{X}(t)=\int_{-\infty}^{\infty} f_{X, Y}(t, s) d s=\int_{-\sqrt{1-t^{2}}}^{\sqrt{1-t^{2}}} c d s=2 c \sqrt{1-t^{2}}
$$

If $t \notin[-1,1]$ then $f_{X, Y}(t, s)=0$ for any s so $f_{X}(t)=0$.
Two ways to find c : One, the support of $f_{X, Y}$ is just the unit disc, so $\iint f_{X, Y}(t, s) d t d s=c \pi$ and $c=\pi^{-1}$. The second is to integrate f_{X} above. So

$$
f_{X}(t)= \begin{cases}\frac{2}{\pi} \cdot \sqrt{1-t^{2}} & t \in[-1,1] \\ 0 & \text { otherwise }\end{cases}
$$

Now,

$$
\mathbb{E}[X]=\int t f_{X}(t) d t=\int_{-1}^{1} t \sqrt{1-t^{2}} d t=0
$$

because $t \mapsto t \sqrt{1-t^{2}}$ is an odd function on $[-1,1]$.
(B) For any $t \notin[-1,1]$, we have that $f_{X, Y}(t, s)=0$ for all s, so $f_{X}(t)=0$. Similarly, if $s \notin[-1,1]$ then $f_{Y}(s)=0$.

For $t \in[-1,1]$ we have

$$
f_{X}(t)=\int_{-\infty}^{\infty} f_{X, Y}(t, s) d s=\int_{|t|-1}^{1-|t|} c d s=2 c(1-|t|)
$$

If we integrate this we get

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} f_{X}(t) d t=\int_{-1}^{1} 2 c(1-|t|) d t=2 c \int_{-1}^{0}(1+t) d t+2 c \int_{0}^{1}(1-t) d t \\
& =2 c \cdot\left(\left.\left(t+\frac{1}{2} t^{2}\right)\right|_{-1} ^{0}+\left.\left(t-\frac{1}{2} t^{2}\right)\right|_{0} ^{1}\right)=2 c
\end{aligned}
$$

So $c=\frac{1}{2}$, and

$$
f_{X}(t)= \begin{cases}1-|t| & t \in[-1,1] \\ 0 & \text { otherwise }\end{cases}
$$

Similarly, for $s \in[-1,1]$,

$$
f_{Y}(s)=\int_{|s|-1}^{1-|s|} c d t=2 c(1-|s|)=1-|s|
$$

and actually $f_{Y}=f_{X}$.
Since $f_{Y}=f_{X}$ we have that

$$
\begin{aligned}
\mathbb{E}\left[Y^{2}\right] & =\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} t^{2} f_{X}(t) d t=\int_{-1}^{1} t^{2}(1-|t|) d t \\
& =\int_{-1}^{0} t^{2}(1+t) d t+\int_{0}^{1} t^{2}(1-t) d t=\left.\left(\frac{1}{3} t^{3}+\frac{1}{4} t^{4}\right)\right|_{-1} ^{0}+\left.\left(\frac{1}{3} t^{3}-\frac{1}{4} t^{4}\right)\right|_{0} ^{1} \\
& =-\left(-\frac{1}{3}\right)-\frac{1}{4}+\frac{1}{3}-\frac{1}{4}=\frac{1}{6}
\end{aligned}
$$

(C) By linearity,

$$
\begin{aligned}
\operatorname{Cov}(A, B) & =\alpha \operatorname{Cov}(X-Y, B)=\alpha^{2} \operatorname{Cov}(X-Y, X+Y) \\
& =\alpha^{2} \cdot(\operatorname{Cov}(X, X)-\operatorname{Cov}(Y, X)+\operatorname{Cov}(X, Y)-\operatorname{Cov}(Y, Y)) \\
& =\alpha^{2} \cdot(\operatorname{Var}[X]-\operatorname{Var}[Y])
\end{aligned}
$$

Since $f_{X}=f_{Y}$ we have that $\operatorname{Var}[X]=\operatorname{Var}[Y]$ and so $\operatorname{Cov}(A, B)=0$.

