
Probability

Solutions to Exam B, Fall 2015

Solution Q1:

(A) Sm − Sn = Xn+1 + · · · +Xm. For any t, s we have that {Sm − Sn ≤ t} ∈

σ(Xn+1, . . . , Xm) and {Sn ≤ s} ∈ σ(X1, . . . , Xn). These σ-algebras are

independent, so {Sm − Sn ≤ t} and {Sn ≤ s} are independent events. So

for all t, s,

P[Sm − Sn ≤ t , Sn ≤ s] = P[Sm − Sn ≤ t] · P[Sn ≤ s].

This implies that Sm − Sn and Sn are independent.

(B) The random variable Sn · 1An is a function of X1, . . . , Xn. The random

variable Sm − Sn is a function of Xn+1, . . . , Xm. Since (X1, . . . , Xn) is

independent of (Xn+1, . . . , Xm), we get that also Sm − Sn is independent

of Sn · 1An . So these random variables are also uncorrelated and

E[(Sm − Sn) · Sn · 1An ] = E[Sm − Sn] · E[Sn · 1An ].

Since E[Sm− Sn] = E[Xn+1] + · · ·+E[Xm] = 0 we have that E[(Sm− Sn) ·

Sn · 1An ] = 0.

(C) Write

E[S2
m · 1An ] = E[(Sm − Sn + Sn)

2 · 1An ]

= E[(Sm − Sn)
2 · 1An ] + E[S2

n · 1An ] + 2E[(Sm − Sn) · Sn · 1An ]

= E[(Sm − Sn)
2 · 1An ] + E[S2

n · 1An ]

≥ E[S2
n · 1An ].

1



2

(D) We will show that

{Mn ≥ a} =
n⊎

k=1

Ak.

So 1{Mn≥a}(ω) = 1 if and only if there is exactly one 1 ≤ k ≤ n such that

1Ak
(ω) = 1. This implies that

1{Mn≥a} =
n∑

k=1

1Ak
.

If Mn ≥ a, then, there exists j ≤ n such that |Sj| ≥ a. Thus, there

exists a minimal such j; that is, there exists k for which |Sj| < a if j < k

and |Sk| ≥ a. So we have shown that {Mn ≥ a} ⊂
⋃n

k=1Ak.

On the other hand, if Ak occurs then |Sk| ≥ a, so also Mn ≥ a. That is,

Ak ⊂ {Mn ≥ a} for all k ≤ n, which implies that
⋃n

k=1Ak ⊂ {Mn ≥ a}.

The two inclusions prove that

{Mn ≥ a} =
n⋃

k=1

Ak.

So we are left with showing that the union is disjoint.

If k > j we have

Ak ∩ Aj ⊂ {|Sj| < a} ∩ {|Sj| ≥ a} = ∅.

So (Ak)k are pairwise disjoint.

(E) Since S2
n ≥ S2

n1{Mn≥a}, by linearity,

E[S2
n] ≥ E[S2

n1{Mn≥a}] =
n∑

k=1

E[S2
n1Ak

] ≥
n∑

k=1

E[S2
k1Ak

],

where the last inequality is from (C).

Markov’s inequality gives that for the non-negative random variable

S2
n1An ,

P[S2
n1An ≥ a2] ≤ E[S2

n1An ] · 1
a2
.
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Also, if Mn ≥ a then there exists k ≤ n such that 1Ak
= 1 and S2

k ≥ a2.

So,

P[Mn ≥ a] ≤ P[
n⋃

k=1

{
S2
k1Ak

≥ a2
}
]

≤
n∑

k=1

P[S2
k1Ak

≥ a2] ≤ 1

a2
·

n∑
k=1

E[S2
k1Ak

]

≤ 1

a2
· E[S2

n].

Finally, since E[Sn] =
∑n

k=1 E[Xk] = 0 we have that E[S2
n] = Var[Sn] and

so

P[Mn ≥ a] ≤ 1

a2
· Var[Sn].

Solution Q2:

(A) Since X is absolutely continuous,

E[(X+)2] =

∫ ∞
−∞

(t+)2fX(t)dt =

∫ ∞
0

t2fX(t)dt

=

∫ ∞
0

∫ t

0

2sdsfX(t)dt =

∫ ∞
0

∫ t

0

2sfX(t)dsdt

=

∫ ∞
0

∫ ∞
s

2sfX(t)dtds =

∫ ∞
0

2sP[X > s]ds.

(B) We have

E[X] =
∞∑
k=0

k P[X = k] =
∞∑
k=1

k−1∑
m=0

P[X = k]

=
∞∑

m=0

∞∑
k=m+1

P[X = k] =
∞∑

m=0

P[X ≥ m+ 1]

=
∞∑

m=0

P[X > m].

Solution Q3:
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(A) Note that for any k we have that nk, nk+1 ≥ nk so

P[|Yk+1 − Yk| > 2−k] = P[|Xnk+1
−Xnk

| > 2−k] < 2−k.

For any n we have

P[
⋃
k≥n

{
|Yk − Yk+1| > 2−k

}
] ≤

∑
k≥n

P[|Yk+1 − Yk| > 2−k] ≤
∞∑
k=n

2−k = 2−n+1.

For any n we have that F ⊂
⋃

k≥n
{
|Yk − Yk+1| > 2−k

}
, so P[F ] ≤ 2−n+1

for all n. Thus, P[F ] = 0.

(B) We know that (Yk)k converges if and only if (Yk)k is a Cauchy sequence.

So we need to show that (Yk)k is a Cauchy sequence a.s.

Now, if ω 6∈ F (for F as in (A)), then

ω ∈ F c =
⋃
n

⋂
k≥n

{
|Yk − Yk+1| ≤ 2−k

}
.

That is, if ω 6∈ F then there exists n such that for all k ≥ n we have

|Yk+1(ω) − Yk(ω)| ≤ 2−k. In this case, for any k ≥ n and m ≥ 0 we have

that

|Yk+m(ω)−Yk(ω)| ≤
m−1∑
j=0

|Yk+j+1(ω)−Yk+j(ω)| ≤
∞∑
j=0

|Yk+i+1(ω)−Yk+i(ω)| ≤
∞∑
j=0

2−k−j = 2−k+1.

That is, for any ε > 0 there exists n such that for all k,m ≥ n we have

|Yk(ω) − Ym(ω)| ≤ ε. So for any ω 6∈ F we have that (Yk(ω))k forms a

Cauchy sequence. Thus,

P[(Yk)k is a Cauchy sequence ] ≥ P[F c] = 1.

(C) A = {Z = W} = {Z −W = 0} = (Z−W )−1({0}). Since Z,W are random

variables, so is Z −W , and so A = (Z −W )−1({0}) is an event.
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Now, for any ω we have that the limit limkXk(ω) exists if and only if

Z(ω) = W (ω). If the limit exists, then it is equal to Z(ω) = W (ω). Thus,

Y (ω) =

 Z(ω) if Z(ω) = W (ω)

0 if Z(ω) 6= W (ω)

 = Z(ω)1{Z=W}(ω).

That is, Y = Z · 1A. Because A is an event, 1A is a random variable, and

thus so is Y = Z · 1A as a product of two random variables.


