Probability

Solutions to Exam B, Fall 2015

Solution Q1:

(A) $S_{m}-S_{n}=X_{n+1}+\cdots+X_{m}$. For any t, s we have that $\left\{S_{m}-S_{n} \leq t\right\} \in$ $\sigma\left(X_{n+1}, \ldots, X_{m}\right)$ and $\left\{S_{n} \leq s\right\} \in \sigma\left(X_{1}, \ldots, X_{n}\right)$. These σ-algebras are independent, so $\left\{S_{m}-S_{n} \leq t\right\}$ and $\left\{S_{n} \leq s\right\}$ are independent events. So for all t, s,

$$
\mathbb{P}\left[S_{m}-S_{n} \leq t, S_{n} \leq s\right]=\mathbb{P}\left[S_{m}-S_{n} \leq t\right] \cdot \mathbb{P}\left[S_{n} \leq s\right] .
$$

This implies that $S_{m}-S_{n}$ and S_{n} are independent.
(B) The random variable $S_{n} \cdot \mathbf{1}_{A_{n}}$ is a function of X_{1}, \ldots, X_{n}. The random variable $S_{m}-S_{n}$ is a function of X_{n+1}, \ldots, X_{m}. Since $\left(X_{1}, \ldots, X_{n}\right)$ is independent of $\left(X_{n+1}, \ldots, X_{m}\right)$, we get that also $S_{m}-S_{n}$ is independent of $S_{n} \cdot \mathbf{1}_{A_{n}}$. So these random variables are also uncorrelated and

$$
\mathbb{E}\left[\left(S_{m}-S_{n}\right) \cdot S_{n} \cdot \mathbf{1}_{A_{n}}\right]=\mathbb{E}\left[S_{m}-S_{n}\right] \cdot \mathbb{E}\left[S_{n} \cdot \mathbf{1}_{A_{n}}\right] .
$$

Since $\mathbb{E}\left[S_{m}-S_{n}\right]=\mathbb{E}\left[X_{n+1}\right]+\cdots+\mathbb{E}\left[X_{m}\right]=0$ we have that $\mathbb{E}\left[\left(S_{m}-S_{n}\right)\right.$. $\left.S_{n} \cdot \mathbf{1}_{A_{n}}\right]=0$.
(C) Write

$$
\begin{aligned}
\mathbb{E}\left[S_{m}^{2} \cdot \mathbf{1}_{A_{n}}\right] & =\mathbb{E}\left[\left(S_{m}-S_{n}+S_{n}\right)^{2} \cdot \mathbf{1}_{A_{n}}\right] \\
& =\mathbb{E}\left[\left(S_{m}-S_{n}\right)^{2} \cdot \mathbf{1}_{A_{n}}\right]+\mathbb{E}\left[S_{n}^{2} \cdot \mathbf{1}_{A_{n}}\right]+2 \mathbb{E}\left[\left(S_{m}-S_{n}\right) \cdot S_{n} \cdot \mathbf{1}_{A_{n}}\right] \\
& =\mathbb{E}\left[\left(S_{m}-S_{n}\right)^{2} \cdot \mathbf{1}_{A_{n}}\right]+\mathbb{E}\left[S_{n}^{2} \cdot \mathbf{1}_{A_{n}}\right] \\
& \geq \mathbb{E}\left[S_{n}^{2} \cdot \mathbf{1}_{A_{n}}\right] .
\end{aligned}
$$

(D) We will show that

$$
\left\{M_{n} \geq a\right\}=\biguplus_{k=1}^{n} A_{k}
$$

So $\mathbf{1}_{\left\{M_{n} \geq a\right\}}(\omega)=1$ if and only if there is exactly one $1 \leq k \leq n$ such that $\mathbf{1}_{A_{k}}(\omega)=1$. This implies that

$$
\mathbf{1}_{\left\{M_{n} \geq a\right\}}=\sum_{k=1}^{n} \mathbf{1}_{A_{k}} .
$$

If $M_{n} \geq a$, then, there exists $j \leq n$ such that $\left|S_{j}\right| \geq a$. Thus, there exists a minimal such j; that is, there exists k for which $\left|S_{j}\right|<a$ if $j<k$ and $\left|S_{k}\right| \geq a$. So we have shown that $\left\{M_{n} \geq a\right\} \subset \bigcup_{k=1}^{n} A_{k}$.

On the other hand, if A_{k} occurs then $\left|S_{k}\right| \geq a$, so also $M_{n} \geq a$. That is, $A_{k} \subset\left\{M_{n} \geq a\right\}$ for all $k \leq n$, which implies that $\bigcup_{k=1}^{n} A_{k} \subset\left\{M_{n} \geq a\right\}$.

The two inclusions prove that

$$
\left\{M_{n} \geq a\right\}=\bigcup_{k=1}^{n} A_{k}
$$

So we are left with showing that the union is disjoint.
If $k>j$ we have

$$
A_{k} \cap A_{j} \subset\left\{\left|S_{j}\right|<a\right\} \cap\left\{\left|S_{j}\right| \geq a\right\}=\emptyset
$$

So $\left(A_{k}\right)_{k}$ are pairwise disjoint.
(E) Since $S_{n}^{2} \geq S_{n}^{2} \mathbf{1}_{\left\{M_{n} \geq a\right\}}$, by linearity,

$$
\mathbb{E}\left[S_{n}^{2}\right] \geq \mathbb{E}\left[S_{n}^{2} \mathbf{1}_{\left\{M_{n} \geq a\right\}}\right]=\sum_{k=1}^{n} \mathbb{E}\left[S_{n}^{2} \mathbf{1}_{A_{k}}\right] \geq \sum_{k=1}^{n} \mathbb{E}\left[S_{k}^{2} \mathbf{1}_{A_{k}}\right]
$$

where the last inequality is from (C).
Markov's inequality gives that for the non-negative random variable $S_{n}^{2} \mathbf{1}_{A_{n}}$,

$$
\mathbb{P}\left[S_{n}^{2} \mathbf{1}_{A_{n}} \geq a^{2}\right] \leq \mathbb{E}\left[S_{n}^{2} \mathbf{1}_{A_{n}}\right] \cdot \frac{1}{a^{2}}
$$

Also, if $M_{n} \geq a$ then there exists $k \leq n$ such that $\mathbf{1}_{A_{k}}=1$ and $S_{k}^{2} \geq a^{2}$. So,

$$
\begin{aligned}
\mathbb{P}\left[M_{n} \geq a\right] & \leq \mathbb{P}\left[\bigcup_{k=1}^{n}\left\{S_{k}^{2} \mathbf{1}_{A_{k}} \geq a^{2}\right\}\right] \\
& \leq \sum_{k=1}^{n} \mathbb{P}\left[S_{k}^{2} \mathbf{1}_{A_{k}} \geq a^{2}\right] \leq \frac{1}{a^{2}} \cdot \sum_{k=1}^{n} \mathbb{E}\left[S_{k}^{2} \mathbf{1}_{A_{k}}\right] \\
& \leq \frac{1}{a^{2}} \cdot \mathbb{E}\left[S_{n}^{2}\right] .
\end{aligned}
$$

Finally, since $\mathbb{E}\left[S_{n}\right]=\sum_{k=1}^{n} \mathbb{E}\left[X_{k}\right]=0$ we have that $\mathbb{E}\left[S_{n}^{2}\right]=\operatorname{Var}\left[S_{n}\right]$ and so

$$
\mathbb{P}\left[M_{n} \geq a\right] \leq \frac{1}{a^{2}} \cdot \operatorname{Var}\left[S_{n}\right]
$$

Solution Q2:

(A) Since X is absolutely continuous,

$$
\begin{aligned}
\mathbb{E}\left[\left(X^{+}\right)^{2}\right] & =\int_{-\infty}^{\infty}\left(t^{+}\right)^{2} f_{X}(t) d t=\int_{0}^{\infty} t^{2} f_{X}(t) d t \\
& =\int_{0}^{\infty} \int_{0}^{t} 2 s d s f_{X}(t) d t=\int_{0}^{\infty} \int_{0}^{t} 2 s f_{X}(t) d s d t \\
& =\int_{0}^{\infty} \int_{s}^{\infty} 2 s f_{X}(t) d t d s=\int_{0}^{\infty} 2 s \mathbb{P}[X>s] d s
\end{aligned}
$$

(B) We have

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{k=0}^{\infty} k \mathbb{P}[X=k]=\sum_{k=1}^{\infty} \sum_{m=0}^{k-1} \mathbb{P}[X=k] \\
& =\sum_{m=0}^{\infty} \sum_{k=m+1}^{\infty} \mathbb{P}[X=k]=\sum_{m=0}^{\infty} \mathbb{P}[X \geq m+1] \\
& =\sum_{m=0}^{\infty} \mathbb{P}[X>m] .
\end{aligned}
$$

Solution Q3:

(A) Note that for any k we have that $n_{k}, n_{k+1} \geq n_{k}$ so

$$
\mathbb{P}\left[\left|Y_{k+1}-Y_{k}\right|>2^{-k}\right]=\mathbb{P}\left[\left|X_{n_{k+1}}-X_{n_{k}}\right|>2^{-k}\right]<2^{-k}
$$

For any n we have

$$
\mathbb{P}\left[\bigcup_{k \geq n}\left\{\left|Y_{k}-Y_{k+1}\right|>2^{-k}\right\}\right] \leq \sum_{k \geq n} \mathbb{P}\left[\left|Y_{k+1}-Y_{k}\right|>2^{-k}\right] \leq \sum_{k=n}^{\infty} 2^{-k}=2^{-n+1}
$$

For any n we have that $F \subset \bigcup_{k \geq n}\left\{\left|Y_{k}-Y_{k+1}\right|>2^{-k}\right\}$, so $\mathbb{P}[F] \leq 2^{-n+1}$ for all n. Thus, $\mathbb{P}[F]=0$.
(B) We know that $\left(Y_{k}\right)_{k}$ converges if and only if $\left(Y_{k}\right)_{k}$ is a Cauchy sequence. So we need to show that $\left(Y_{k}\right)_{k}$ is a Cauchy sequence a.s.

Now, if $\omega \notin F$ (for F as in (A)), then

$$
\omega \in F^{c}=\bigcup_{n} \bigcap_{k \geq n}\left\{\left|Y_{k}-Y_{k+1}\right| \leq 2^{-k}\right\}
$$

That is, if $\omega \notin F$ then there exists n such that for all $k \geq n$ we have $\left|Y_{k+1}(\omega)-Y_{k}(\omega)\right| \leq 2^{-k}$. In this case, for any $k \geq n$ and $m \geq 0$ we have that

$$
\left|Y_{k+m}(\omega)-Y_{k}(\omega)\right| \leq \sum_{j=0}^{m-1}\left|Y_{k+j+1}(\omega)-Y_{k+j}(\omega)\right| \leq \sum_{j=0}^{\infty}\left|Y_{k+i+1}(\omega)-Y_{k+i}(\omega)\right| \leq \sum_{j=0}^{\infty} 2^{-k-j}=2^{-k+1}
$$

That is, for any $\varepsilon>0$ there exists n such that for all $k, m \geq n$ we have $\left|Y_{k}(\omega)-Y_{m}(\omega)\right| \leq \varepsilon$. So for any $\omega \notin F$ we have that $\left(Y_{k}(\omega)\right)_{k}$ forms a Cauchy sequence. Thus,

$$
\mathbb{P}\left[\left(Y_{k}\right)_{k} \text { is a Cauchy sequence }\right] \geq \mathbb{P}\left[F^{c}\right]=1
$$

(C) $A=\{Z=W\}=\{Z-W=0\}=(Z-W)^{-1}(\{0\})$. Since Z, W are random variables, so is $Z-W$, and so $A=(Z-W)^{-1}(\{0\})$ is an event.

Now, for any ω we have that the $\operatorname{limit}^{\lim }{ }_{k} X_{k}(\omega)$ exists if and only if $Z(\omega)=W(\omega)$. If the limit exists, then it is equal to $Z(\omega)=W(\omega)$. Thus,

$$
Y(\omega)=\left\{\begin{array}{ll}
Z(\omega) & \text { if } Z(\omega)=W(\omega) \\
0 & \text { if } Z(\omega) \neq W(\omega)
\end{array}\right\}=Z(\omega) 1_{\{Z=W\}}(\omega)
$$

That is, $Y=Z \cdot \mathbf{1}_{A}$. Because A is an event, $\mathbf{1}_{A}$ is a random variable, and thus so is $Y=Z \cdot \mathbf{1}_{A}$ as a product of two random variables.

