
Probability

Solutions to Exam B, Fall 2015

Solution Q1:

(A) We will use the following identity (Pascal’s triangle): For 1 ≤ k ≤ n,(
n

k − 1

)
+

(
n

k

)
=

n!

(k − 1)!(n− k)!
·
(

1
n+1−k + 1

k

)
=

n!

(k − 1)!(n− k)!
· n+ 1

k(n+ 1− k)
=

(
n+ 1

k

)
.

Now, for any k ∈ {1, . . . , n+ 1} we have using the law of total probability

and the independence of X, Y ,

P[Z = k] = P[X + Y = k] = P[X = k − 1, Y = 1] + P[X = k, Y = 0]

= P[X = k − 1] · p+ P[X = k] · (1− p)

=

(
n

k − 1

)
pk−1(1− p)n−k+1 · p+

(
n

k

)
pk(1− p)n−k · (1− p)

=

(
n+ 1

k

)
pk(1− p)n+1−k.

For k = 0 we have

P[Z = 0] = P[X = 0, Y = 0] = P[X = 0] · P[Y = 0] = (1− p)n+1.

since these all add up to 1, we get that RZ = {0, 1, . . . , n+ 1} and for

k ∈ {0, 1, . . . , n+ 1},

fZ(k) =

(
n+ 1

k

)
pk(1− p)n+1−k,

which is exactly the Bin(n+ 1, p) density.

(B) This we prove by induction on m. For m = 1, since Bin(1, p) = Ber(p), we

get that A+B ∼ Bin(n+ 1, p) by the previous item.
1



2

For the induction step, assume the claim holds for m and we will prove

it for m+ 1. So A ∼ Bin(n, p) and B ∼ Bin(m+ 1, p).

Let C ∼ Bin(m, p) and D ∼ Ber(p) be such that A,B,C,D are inde-

pendent. Note that by the previous item, B and C + D have the same

distribution. Thus, it suffices to prove that A+C+D ∼ Bin(n+m+1, p).

By induction, A+ C ∼ Bin(n+m, p) because A,C are independent.

However, since A + C and D are independent, by the previous item

again, (A+ C) +D ∼ Bin(n+m+ 1, p), which completes the induction.

(C) Let A ∼ Bin(n, 1
2
) and B ∼ Bin(m, 1

2
) be independent, for m ≥ n. Then,

by the law of total probability, because m ≥ n,

P[A+B = n] =
n∑
k=0

P[A = k,B = n− k] =
n∑
k=0

P[A = k] · P[B = n− k]

=
n∑
k=0

(
n

k

)
2−n ·

(
m

n− k

)
2−m

= 2−(n+m) ·
n∑
k=0

(
n

k

)
·
(

m

n− k

)
.

But by the previous item, A+B ∼ Bin(n+m, 1
2
), so

P[A+B = n] = 2−(n+m) ·
(
n+m

n

)
.

Solution Q2:

(A) Let R be the range of X and Y (they have the same range, since they

have the same distribution). Then, by the law of total probability and
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independence,

P[X < Y ] =
∑
r∈R

P[X < Y,X = r] =
∑
r∈R

fX(r) · P[Y > r]

=
∑
r∈R

fX(r) · (1− FY (r)) =
∑
r∈R

fY (r) · (1− FX(r))

=
∑
r∈R

P[Y < X, Y = r] = P[Y < X],

where we have used the fact that fX = fY and FX = FY . This is the first

equality.

Now, Ω = {Y < X} ] {X < Y } ] {X = Y }, so

1 = P[X < Y ] + P[Y < X] + P[X = Y ] = 2P[X < Y ] + p.

A simple rearrangement completes the proof.

(B) Note that P[X < Y ] = P[(X, Y ) ∈ A]. So, simply,

P[X < Y ] =

∫ ∫
A

fX,Y (x, y)dydx =

∫ ∞
−∞

∫ ∞
x

fX,Y (x, y)dydx.

Now, X, Y are independent and have the same distribution. So fX,Y (x, y) =

fX(x)fY (y). But then,

P[X < Y ] =

∫ ∞
−∞

fX(x)

∫ ∞
x

fY (y)dydx =

∫ ∞
−∞

fX(x)(1− FY (x))dx.

We can do the same calculation with fY,X . Again, fY,X(y, x) = fY (y)fX(x)

by independence. So

P[Y < X] =

∫ ∞
−∞

fY (y)(1− FX(y))dy,

just as above.

We now use the fact that fX = fY and FX = FY to get that

P[Y < X] =

∫ ∞
−∞

fY (y)(1− FX(y))dy =

∫ ∞
−∞

fX(y)(1− FY (y))dy = P[X < Y ].



4

Finally, since Ω = {Y < X} ] {X < Y } ] {X = Y }, and since X, Y are

continuous, and thus P[X = Y ] = 0, we get that

1 = P[X < Y ] + P[Y < X] = 2P[X < Y ].

(C) The main observation is that if we define Ai = {Xi > Xi−1} for all i ≥ 2,

we get

N =
n∑
i=2

1{Xi>Xi−1} =
n∑
i=2

1Ai
.

In the previous item we showed that P[Ai] = 1
2

for all i. By linearity we

immediately get

E[N ] =
n∑
i=2

P[Ai] =
n− 1

2
.

As for the variance, we first compute Cov(1Ai
,1Aj

) for j > i:

If j > i + 1 then since Aj ∈ σ(Xj, Xj−1) and Ai ∈ σ(Xi, Xi−1), we get

that Aj, Ai are independent, which is to say that

E[1Aj
1Ai

] = P[Aj ∩ Ai] = P[Aj] · P[Ai] = E[1Aj
] · E[1Ai

].

That is, Cov(1Ai
,1Aj

) = 0 for all j > i+ 1.

If j = i+ 1 then

E[1Aj
1Ai

] = P[Aj ∩ Ai] = P[Xi+1 > Xi > Xi−1] = 1
6
.

So

Cov(1Ai
,1Ai+1

) =
1

6
− E[1Ai+1

] · E[1Ai
] =

1

6
− 1

4
= − 1

12
.
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Now using the Pythagorean Theorem,

Var[N ] =
n∑
i=2

Var[1Ai
] + 2

∑
2≤i<j≤n

Cov(1Ai
,1Aj

)

=
n− 1

4
+ 2

n−1∑
i=2

Cov(1Ai
,1Ai+1

) + 2
∑

2≤i≤n
j>i+1

Cov(1Ai
,1Aj

)

=
n− 1

4
− 2 · n− 2

12
= n(1

4
− 1

6
)− 1

4
+ 1

3
=
n+ 1

12
.

(We have used the fact that indicators are Bernoulli random variables, so

Var[I] = E[I](1− E[I]) for an indicator I.)

Solution Q3:

(A) First, set Y = X
σ

. So Y ∼ N (0, 1). Then, since ∂
∂y
e−y

2/2 = −ye−y2/2,

I1 :=

∫ ∞
0

ye−y
2/2dy = (−e−y2/2)

∣∣∞
0

= 1

I2 :=

∫ 0

−∞
ye−y

2/2dy = (−e−y2/2)
∣∣0
−∞ = −1.

Thus,

E[|Y |] =
1√
2π
·
∫ ∞
−∞
|y|e−y2/2dy =

1√
2π

(I1 − I2) =
√

2
π
.

Thus,

E[|X|] = σ E[|Y |] =
√

2
π
· σ.

(B) Since the total mass is 1,

1 =

∫ ∫
fX,Y (t, s)dsdt =

√
πc ·

∫ 1

0

∫ ∞
−∞

1√
2π · (t/

√
2)
|s| exp(− s2

2(t/
√
2)2

)dsdt

=
√
πc ·

∫ 1

0

E[|N (0, t/
√

2)|]dt =
√
πc ·

∫ 1

0

√
2
π
· t√

2
dt = c · 1

2
.

Thus c = 2.
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(C) For t 6∈ (0, 1) we have fX,Y (t, s) = 0 so fX(t) = 0. For 0 < t < 1 we get

fX(t) =

∫ ∞
−∞

fX,Y (t, s)ds = 2
√
π ·
∫ ∞
−∞

1√
2π · (t/

√
2)
|s| exp(− s2

2(t/
√
2)2

)ds

= 2
√
π E[|N (0, t/

√
2)|] = 2

√
π ·
√

2
π
· t√

2
= 2t.

That is,

fX(t) =

0 t 6∈ (0, 1)

2t t ∈ (0, 1).

One may indeed check that this is a density.


