Probability

Solutions to Exam B, Fall 2015

Solution Q1:

(A) We will use the following identity (Pascal's triangle): For $1 \leq k \leq n$,

$$
\begin{aligned}
\binom{n}{k-1}+\binom{n}{k} & =\frac{n!}{(k-1)!(n-k)!} \cdot\left(\frac{1}{n+1-k}+\frac{1}{k}\right) \\
& =\frac{n!}{(k-1)!(n-k)!} \cdot \frac{n+1}{k(n+1-k)}=\binom{n+1}{k} .
\end{aligned}
$$

Now, for any $k \in\{1, \ldots, n+1\}$ we have using the law of total probability and the independence of X, Y,

$$
\begin{aligned}
\mathbb{P}[Z=k] & =\mathbb{P}[X+Y=k]=\mathbb{P}[X=k-1, Y=1]+\mathbb{P}[X=k, Y=0] \\
& =\mathbb{P}[X=k-1] \cdot p+\mathbb{P}[X=k] \cdot(1-p) \\
& =\binom{n}{k-1} p^{k-1}(1-p)^{n-k+1} \cdot p+\binom{n}{k} p^{k}(1-p)^{n-k} \cdot(1-p) \\
& =\binom{n+1}{k} p^{k}(1-p)^{n+1-k} .
\end{aligned}
$$

For $k=0$ we have

$$
\mathbb{P}[Z=0]=\mathbb{P}[X=0, Y=0]=\mathbb{P}[X=0] \cdot \mathbb{P}[Y=0]=(1-p)^{n+1}
$$

since these all add up to 1 , we get that $R_{Z}=\{0,1, \ldots, n+1\}$ and for $k \in\{0,1, \ldots, n+1\}$,

$$
f_{Z}(k)=\binom{n+1}{k} p^{k}(1-p)^{n+1-k}
$$

which is exactly the $\operatorname{Bin}(n+1, p)$ density.
(B) This we prove by induction on m. For $m=1$, since $\operatorname{Bin}(1, p)=\operatorname{Ber}(p)$, we get that $A+B \sim \operatorname{Bin}(n+1, p)$ by the previous item.

For the induction step, assume the claim holds for m and we will prove it for $m+1$. So $A \sim \operatorname{Bin}(n, p)$ and $B \sim \operatorname{Bin}(m+1, p)$.

Let $C \sim \operatorname{Bin}(m, p)$ and $D \sim \operatorname{Ber}(p)$ be such that A, B, C, D are independent. Note that by the previous item, B and $C+D$ have the same distribution. Thus, it suffices to prove that $A+C+D \sim \operatorname{Bin}(n+m+1, p)$.

By induction, $A+C \sim \operatorname{Bin}(n+m, p)$ because A, C are independent.
However, since $A+C$ and D are independent, by the previous item again, $(A+C)+D \sim \operatorname{Bin}(n+m+1, p)$, which completes the induction.
(C) Let $A \sim \operatorname{Bin}\left(n, \frac{1}{2}\right)$ and $B \sim \operatorname{Bin}\left(m, \frac{1}{2}\right)$ be independent, for $m \geq n$. Then, by the law of total probability, because $m \geq n$,

$$
\begin{aligned}
\mathbb{P}[A+B=n] & =\sum_{k=0}^{n} \mathbb{P}[A=k, B=n-k]=\sum_{k=0}^{n} \mathbb{P}[A=k] \cdot \mathbb{P}[B=n-k] \\
& =\sum_{k=0}^{n}\binom{n}{k} 2^{-n} \cdot\binom{m}{n-k} 2^{-m} \\
& =2^{-(n+m)} \cdot \sum_{k=0}^{n}\binom{n}{k} \cdot\binom{m}{n-k} .
\end{aligned}
$$

But by the previous item, $A+B \sim \operatorname{Bin}\left(n+m, \frac{1}{2}\right)$, so

$$
\mathbb{P}[A+B=n]=2^{-(n+m)} \cdot\binom{n+m}{n} .
$$

Solution Q2:

(A) Let R be the range of X and Y (they have the same range, since they have the same distribution). Then, by the law of total probability and
independence,

$$
\begin{aligned}
\mathbb{P}[X<Y] & =\sum_{r \in R} \mathbb{P}[X<Y, X=r]=\sum_{r \in R} f_{X}(r) \cdot \mathbb{P}[Y>r] \\
& =\sum_{r \in R} f_{X}(r) \cdot\left(1-F_{Y}(r)\right)=\sum_{r \in R} f_{Y}(r) \cdot\left(1-F_{X}(r)\right) \\
& =\sum_{r \in R} \mathbb{P}[Y<X, Y=r]=\mathbb{P}[Y<X],
\end{aligned}
$$

where we have used the fact that $f_{X}=f_{Y}$ and $F_{X}=F_{Y}$. This is the first equality.

Now, $\Omega=\{Y<X\} \uplus\{X<Y\} \uplus\{X=Y\}$, so

$$
1=\mathbb{P}[X<Y]+\mathbb{P}[Y<X]+\mathbb{P}[X=Y]=2 \mathbb{P}[X<Y]+p
$$

A simple rearrangement completes the proof.
(B) Note that $\mathbb{P}[X<Y]=\mathbb{P}[(X, Y) \in A]$. So, simply,

$$
\mathbb{P}[X<Y]=\iint_{A} f_{X, Y}(x, y) d y d x=\int_{-\infty}^{\infty} \int_{x}^{\infty} f_{X, Y}(x, y) d y d x
$$

Now, X, Y are independent and have the same distribution. So $f_{X, Y}(x, y)=$ $f_{X}(x) f_{Y}(y)$. But then,

$$
\mathbb{P}[X<Y]=\int_{-\infty}^{\infty} f_{X}(x) \int_{x}^{\infty} f_{Y}(y) d y d x=\int_{-\infty}^{\infty} f_{X}(x)\left(1-F_{Y}(x)\right) d x
$$

We can do the same calculation with $f_{Y, X}$. Again, $f_{Y, X}(y, x)=f_{Y}(y) f_{X}(x)$ by independence. So

$$
\mathbb{P}[Y<X]=\int_{-\infty}^{\infty} f_{Y}(y)\left(1-F_{X}(y)\right) d y
$$

just as above.
We now use the fact that $f_{X}=f_{Y}$ and $F_{X}=F_{Y}$ to get that

$$
\mathbb{P}[Y<X]=\int_{-\infty}^{\infty} f_{Y}(y)\left(1-F_{X}(y)\right) d y=\int_{-\infty}^{\infty} f_{X}(y)\left(1-F_{Y}(y)\right) d y=\mathbb{P}[X<Y]
$$

Finally, since $\Omega=\{Y<X\} \uplus\{X<Y\} \uplus\{X=Y\}$, and since X, Y are continuous, and thus $\mathbb{P}[X=Y]=0$, we get that

$$
1=\mathbb{P}[X<Y]+\mathbb{P}[Y<X]=2 \mathbb{P}[X<Y]
$$

(C) The main observation is that if we define $A_{i}=\left\{X_{i}>X_{i-1}\right\}$ for all $i \geq 2$, we get

$$
N=\sum_{i=2}^{n} \mathbf{1}_{\left\{X_{i}>X_{i-1}\right\}}=\sum_{i=2}^{n} \mathbf{1}_{A_{i}} .
$$

In the previous item we showed that $\mathbb{P}\left[A_{i}\right]=\frac{1}{2}$ for all i. By linearity we immediately get

$$
\mathbb{E}[N]=\sum_{i=2}^{n} \mathbb{P}\left[A_{i}\right]=\frac{n-1}{2}
$$

As for the variance, we first compute $\operatorname{Cov}\left(\mathbf{1}_{A_{i}}, \mathbf{1}_{A_{j}}\right)$ for $j>i$:
If $j>i+1$ then since $A_{j} \in \sigma\left(X_{j}, X_{j-1}\right)$ and $A_{i} \in \sigma\left(X_{i}, X_{i-1}\right)$, we get that A_{j}, A_{i} are independent, which is to say that

$$
\mathbb{E}\left[\mathbf{1}_{A_{j}} \mathbf{1}_{A_{i}}\right]=\mathbb{P}\left[A_{j} \cap A_{i}\right]=\mathbb{P}\left[A_{j}\right] \cdot \mathbb{P}\left[A_{i}\right]=\mathbb{E}\left[\mathbf{1}_{A_{j}}\right] \cdot \mathbb{E}\left[\mathbf{1}_{A_{i}}\right] .
$$

That is, $\operatorname{Cov}\left(\mathbf{1}_{A_{i}}, \mathbf{1}_{A_{j}}\right)=0$ for all $j>i+1$.
If $j=i+1$ then

$$
\mathbb{E}\left[\mathbf{1}_{A_{j}} \mathbf{1}_{A_{i}}\right]=\mathbb{P}\left[A_{j} \cap A_{i}\right]=\mathbb{P}\left[X_{i+1}>X_{i}>X_{i-1}\right]=\frac{1}{6} .
$$

So

$$
\operatorname{Cov}\left(\mathbf{1}_{A_{i}}, \mathbf{1}_{A_{i+1}}\right)=\frac{1}{6}-\mathbb{E}\left[\mathbf{1}_{A_{i+1}}\right] \cdot \mathbb{E}\left[\mathbf{1}_{A_{i}}\right]=\frac{1}{6}-\frac{1}{4}=-\frac{1}{12} .
$$

Now using the Pythagorean Theorem,

$$
\begin{aligned}
\operatorname{Var}[N] & =\sum_{i=2}^{n} \operatorname{Var}\left[\mathbf{1}_{A_{i}}\right]+2 \sum_{2 \leq i<j \leq n} \operatorname{Cov}\left(\mathbf{1}_{A_{i}}, \mathbf{1}_{A_{j}}\right) \\
& =\frac{n-1}{4}+2 \sum_{i=2}^{n-1} \operatorname{Cov}\left(\mathbf{1}_{A_{i}}, \mathbf{1}_{A_{i+1}}\right)+2 \sum_{\substack{2 \leq i \leq n \\
j>i \neq 1}} \operatorname{Cov}\left(\mathbf{1}_{A_{i}}, \mathbf{1}_{A_{j}}\right) \\
& =\frac{n-1}{4}-2 \cdot \frac{n-2}{12}=n\left(\frac{1}{4}-\frac{1}{6}\right)-\frac{1}{4}+\frac{1}{3}=\frac{n+1}{12} .
\end{aligned}
$$

(We have used the fact that indicators are Bernoulli random variables, so $\operatorname{Var}[I]=\mathbb{E}[I](1-\mathbb{E}[I])$ for an indicator I.

Solution Q3:

(A) First, set $Y=\frac{X}{\sigma}$. So $Y \sim \mathcal{N}(0,1)$. Then, since $\frac{\partial}{\partial y} e^{-y^{2} / 2}=-y e^{-y^{2} / 2}$,

$$
\begin{aligned}
& I_{1}:=\int_{0}^{\infty} y e^{-y^{2} / 2} d y=\left.\left(-e^{-y^{2} / 2}\right)\right|_{0} ^{\infty}=1 \\
& I_{2}:=\int_{-\infty}^{0} y e^{-y^{2} / 2} d y=\left.\left(-e^{-y^{2} / 2}\right)\right|_{-\infty} ^{0}=-1 .
\end{aligned}
$$

Thus,

$$
\mathbb{E}[|Y|]=\frac{1}{\sqrt{2 \pi}} \cdot \int_{-\infty}^{\infty}|y| e^{-y^{2} / 2} d y=\frac{1}{\sqrt{2 \pi}}\left(I_{1}-I_{2}\right)=\sqrt{\frac{2}{\pi}} .
$$

Thus,

$$
\mathbb{E}[|X|]=\sigma \mathbb{E}[|Y|]=\sqrt{\frac{2}{\pi}} \cdot \sigma
$$

(B) Since the total mass is 1 ,

$$
\begin{aligned}
1 & =\iint f_{X, Y}(t, s) d s d t=\sqrt{\pi} c \cdot \int_{0}^{1} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \cdot(t / \sqrt{2})}|s| \exp \left(-\frac{s^{2}}{2(t / \sqrt{2})^{2}}\right) d s d t \\
& =\sqrt{\pi} c \cdot \int_{0}^{1} \mathbb{E}[|\mathcal{N}(0, t / \sqrt{2})|] d t=\sqrt{\pi} c \cdot \int_{0}^{1} \sqrt{\frac{2}{\pi}} \cdot \frac{t}{\sqrt{2}} d t=c \cdot \frac{1}{2} .
\end{aligned}
$$

Thus $c=2$.
(C) For $t \notin(0,1)$ we have $f_{X, Y}(t, s)=0$ so $f_{X}(t)=0$. For $0<t<1$ we get

$$
\begin{aligned}
f_{X}(t) & =\int_{-\infty}^{\infty} f_{X, Y}(t, s) d s=2 \sqrt{\pi} \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \cdot(t / \sqrt{2})}|s| \exp \left(-\frac{s^{2}}{2(t / \sqrt{2})^{2}}\right) d s \\
& =2 \sqrt{\pi} \mathbb{E}[|\mathcal{N}(0, t / \sqrt{2})|]=2 \sqrt{\pi} \cdot \sqrt{\frac{2}{\pi}} \cdot \frac{t}{\sqrt{2}}=2 t
\end{aligned}
$$

That is,

$$
f_{X}(t)= \begin{cases}0 & t \notin(0,1) \\ 2 t & t \in(0,1)\end{cases}
$$

One may indeed check that this is a density.

