
CONTINUITY OF THE SIGNATURE

AMNON YEKUTIELI

Here is my solution of the riddle from 12/3/2014 (Theorem 1 below), with a lot of
explanations, to be understandable by undergraduate math students. The proof relies on
Theorem 3, where I show that the Gram-Schmidt process can be done on an open neigh-
borhood of each point in the space of symmetric invertible matrices.

Comments are welcome. There are much quicker solutions to the riddle, and maybe
they will be communicated by other people.

Let me start with the story. Recently, when reading some old paper, I saw a claim
that the signature of a nondegenerate symmetric bilinear form on a real vector space is
continuous. This was something I had never considered before. At first I thought that
continuity refers to the Zariski topology. However this was quickly seen to be false, already
in dimension 1 (see Example 2 below). What is true is that the signature is continuous in
the classical topology.

Now for some notation. Take n ∈ N, and consider the affine space Rn. This is a
topological space with the classical topology, in which the open sets are unions of open
balls in the Euclidean metric.

Let Matn(R) be the set of n×n real matrices. This set is isomorphic to Rn2

, and hence
it gets a topology (the classical topology). Note that there are several obvious bijections
Matn(R) ∼= Rn2

, but as long as we choose an R-linear bijection we get the same induced
topology. Any subset of Matn(R) acquires the subspace topology. We are interested in the
set GLn(R) of invertible matrices, and the set Sn(R) of symmetric invertible matrices.

Take any b ∈ Sn(R). The Gram-Schmidt process (tweaked a bit to handle negative
numbers) says that we can find a matrix g ∈ GLn(R) such that

gt · b · g = diag(d1, . . . , dn),

a diagonal matrix with entries di ∈ {±1}. Let us call a matrix such as diag(d1, . . . , dn) a
signature matrix. The Sylvester Inertia Theorem says that the integer

sig(b) :=
∑
i

di

is independent of the matrix g. The integer sig(b) is called the signature of b.
Let X be a topological space and Z a set. Recall that a function f : X → Z is called

locally constant if there is an open covering X =
⋃

i Ui such that f |Ui
is constant. This is

equivalent to saying that f is continuous when the set Z is given the discrete topology.
The riddle was to prove this:

Theorem 1. The function
sig : Sn(R)→ Z

is locally constant.
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The next example proves the case n = 1. The general case is done later; it will follow
from a stronger result: Theorem 3.

Example 2. The set S1(R) is just the set of nonzero real numbers. For b = [b] ∈ S1(R)
we have sig(b) = b/|b|, so that sig(b) = 1 iff b > 0, and sig(b) = −1 iff b < 0. Since
the intervals U+ := (0,∞) and U− := (−∞, 0) are open in the classical topology, and
S1(R) = U+ ∪ U−, we see that sig is indeed locally constant.

For those who know the Zariski topology, consider this topology on SpecR[t], and the
induced subspace topology on

S1(R) ⊂ A1(R) ⊂ SpecR[t].
Both sets U+ and U− are dense in S1(R). Therefore the function sig is not locally constant
for the Zariski topology.

Now for the main result of this note. (Presumably it is known to experts, although I do
not know a reference.)

Theorem 3. Let X be some topological space, and let b : X → Sn(R) be a continuous
function. Take any point x ∈ X . Then there is an open neighborhood U of x, a continuous
function g : U → GLn(R), and numbers di ∈ {±1}, such that

g(y)t · b(y) · g(y) = diag(d1, d2, . . . , dn)

for every point y ∈ U .

The proofs of the theorems are at the end of the note, after some preparation.
In what follows X is some topological space. Let us denote by C(X) the ring of con-

tinuous functions f : X → R. It is a commutative ring, and there is a ring homomorphism
R → C(X), sending a number a to the constant function a(x) = a. If g : Y → X is
a continuous map of topological spaces, then there is an induced R-ring homomorphism
g∗ : C(X)→ C(Y ), namely g∗(f) := f ◦g. In case Y is a subset ofX (with the subspace
topology), and g : Y → X is the inclusion, then g∗(f) = f |Y , the restriction. When
Y = {x} is a single point, then C(Y ) = R and f |Y = f(x) ∈ R.

The commutative ring C(X) is viewed as an algebraic object (i.e. it has no topology).
There is the noncommutative ring Matn(C(X)) of n × n matrices, and inside it we have
the group GLn(C(X)) of invertible matrices, and the set Sn(C(X)) of symmetric in-
vertible matrices. Note that GLn(C(X)) is precisely the set of invertible elements of
the ring Matn(C(X)). A continuous map of topological spaces g : Y → X induces
an R-ring homomorphism g∗ : Matn(C(X)) → Matn(C(Y )), a group homomorphism
g∗ : GLn(C(X))→ GLn(C(Y )), and a function of sets g∗ : Sn(C(X))→ Sn(C(Y )).

There is an obvious bijection

(4) Matn(C(X)) ∼= {continuous functions X → Matn(R)};
namely if [ai,j ] ∈ Matn(C(X)), then the corresponding continuous function a : X →
Matn(R) is a(x) := [ai,j(x)].

Here is another way to interpret Theorem 3. It will be used in the proof. The bijection
(4) allows us to view the function b as an element of the set Sn(C(X)). The theorem says
that on a sufficiently small open neighborhood U of x, there is a matrix g ∈ GLn(C(U)),
such that the matrix gt · b|U · g ∈ Matn(C(U)) is a signature matrix.

Here are two easy lemmas that we will need.

Lemma 5. Let g ∈ Matn(C(X)). The following conditions are equivalent:
(i) The matrix g is invertible in the ring Matn(C(X)).
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(ii) The element det(g) invertible in the ring C(X).
(iii) For every point x ∈ X the number det(g)(x) ∈ R is nonzero.
(iv) For every point x ∈ X the matrix g(x) is invertible in the ring Matn(R).

Proof. (i)⇔ (ii): This is true for any commutative ring C, including C := C(X). Indeed,
given g ∈ Matn(C), let h ∈ Matn(C) be the classical adjoint matrix of g, namely the
matrix whose (i, j)-th entry is (−1)ij times the (j, i)-th minor of g. Then g · h = h · g =
det(g) · 1, which is invertible in the ring Matn(C) iff det(g) is invertible in the ring C.

(ii)⇔ (iii): This is clearly true for any g ∈ C(X), including g := det(g).

(iii)⇔ (iv): For every x this is a special (and trivial) case of “(i)⇔ (ii)”. �

Lemma 6. Let g ∈ Matn(C(X)), and let x ∈ X be a point. The following conditions are
equivalent:

(i) The matrix g(x) ∈ Matn(R) is invertible.
(ii) There is an open neighborhood U of X such that the matrix g|U ∈ Matn(C(U))

is invertible.

Proof. By Lemma 5 and continuity of the determinant. �

We now talk about bilinear forms. A bilinear form on the C(X)-module C(X)n is a
C(X)-bilinear function

β : C(X)n × C(X)n → C(X).

The form β is symmetric if β(w, v) = β(v, w) for all pairs of vectors v, w ∈ C(X)n.
There is a canonical bijection between bilinear forms β on C(X)n and matrices b ∈

Matn(C(X)), sending a matrix b to the form

(7) β(v, w) := vt · b · w.
(We consider vectors in C(X)n as columns.) The form β is symmetric iff the correspond-
ing matrix b is symmetric.

Exercise 8. Give good definitions of these notions:
(1) A nondegenerate bilinear form on C(X)n.
(2) A basis of C(X)n.
(3) A “signed” orthonormal basis of C(X)n with respect to a bilinear form β.

Let β be a bilinear form on C(X)n. For any subset Y ⊂ X we get an induced bilinear
form β|Y on C(Y )n, as follows. Let b ∈ Matn(C(X)) be the matrix corresponding to b,
as in (7). By restriction we get a matrix b|Y ∈ Matn(C(Y )), and the bilinear form β|Y
is defined to be the one that corresponds to the matrix b|Y . When Y = {x}, a point, we
write β(x) := β|Y . Since C({x}) = R, we see that β(x) is a bilinear form on Rn.

Proof of Theorem 3. The proof is by induction on n ≥ 1. We will devise an enhanced
version of the Gram-Schmidt process.

Let n ≥ 1, and assume that either n = 1, or n ≥ 2 and the theorem is true for
n − 1. Consider the bilinear form β on C(X)n corresponding to b. The form β(x) on
Rn corresponds to the matrix b(x) ∈ Sn(R), so it is nondegenerate. As in the usual proof
of Gram-Schmidt (tweaked for negative numbers), there is a vector v1 ∈ Rn such that
β(x)(v1, v1) 6= 0.

Using the embedding Rn ⊂ C(X)n we can view v1 as a constant vector in C(X)n. Let
b1 := β(v1, v1) ∈ C(X), and let d1 ∈ {±1} be the sign of the nonzero real number b1(x).
The function d1b1 ∈ C(X) satisfies d1b1(x) > 0. Therefore there is an open neighborhood
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U ′ of x, and a multiplicatively invertible function a1 ∈ C(U ′), such that a21 = d1b1|U ′ .
Define the vector v′1 := a−11 v1 ∈ C(U ′)n. Then β|U ′(v′1, v

′
1) = d1, as functions on U ′.

If n = 1 then the open set U := U ′ and the matrix g := [a−11 ] ∈ GL1(C(U)) satisfy
gt · b|U · g = [d1]. So the proof is done.

If n ≥ 2 we proceed like this. Let (v2, . . . , vn) be a basis of the orthogonal complement
of v1 in the R-module Rn, with respect to the form β(x). Using the embedding Rn ⊂
C(X)n we get a sequence (v1, . . . , vn) of vectors in C(X)n.

For i ≥ 2 we define

v′i := vi − d1 · β|U ′(vi, v
′
1) · v′1 ∈ C(U ′)n.

Observe that β|U ′(v′1, v
′
i) = 0 for i ≥ 2, and that the sequence (v′1(x), . . . , v

′
n(x)) is a

basis of Rn.
Define the symmetric matrix

b′ := [β|U ′(v′i−1, v
′
j−1)]2≤i,j≤n ∈ Matn−1(C(U

′)).

And let h′ ∈ Matn(C(U
′)) be the matrix whose columns are v′1, . . . , v

′
n. We get

(9) h′ t · b|U ′ · h′ =
[
d1 0
0 b′

]
in Matn(C(U

′)). Since h′(x) and b(x) are invertible, by Lemma 6 there is an open
neighborhood U ′′ of x in U ′, such that h′|U ′′ and b|U ′′ are invertible. This implies
b′|U ′′ ∈ Sn−1(C(U

′′)).
By the induction hypothesis, applied to x ∈ U ′′ and b′|U ′′ ∈ Sn−1(C(U

′′)), there is an
open neighborhood U of x in U ′′, and a matrix g′ ∈ GLn−1(C(U)), such that

g′ t · b′|U · g′ = diag(d2, . . . , dn)

for some d2, . . . , dn ∈ {±1}. Let

g := h′|U ·
[
1 0
0 g′

]
∈ GLn(C(U)).

Then
g t · b|U · g = diag(d1, . . . , dn).

�

Corollary 10. Let X be some topological space, and let b : X → Sn(R) be a continuous
function. Then the function

sig ◦ b : X → Z
is locally constant.

Proof. On any open set U as in Theorem 3 the function sig ◦ b is constant. �

Proof of Theorem 1. Take the topological space X := Sn(R) and the identity map b, and
apply Corollary 10. �

Remark 11. For those who know sheaf theory, let OX be the sheaf of continuous real
valued functions on X . The stalk OX,x at x is the ring of germs of continuous functions.
What I really prove in Theorem 3 is that the Gram-Schmidt process can be done inside
Matn(OX,x). Namely given a matrix b ∈ Sn(OX,x), there exists g ∈ GLn(OX,x) such
that gt · b · g is a signature matrix.
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Exercise 12. For any 0 ≤ r ≤ n we can consider the space Sn,r(R) of symmetric n × n
matrices of rank r. So Sn,0(R) = {0}, and Sn,n(R) = Sn(R). Try to generalize Theorem
3 to Sn,r(R); of course here di ∈ {0,±1}. Use it to deduce Theorem 1 for Sn,r(R).
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