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Abstract. Let Γ be a hyperbolic group. The normal topology on Γ is defined

by taking all cosets of infinite normal subgroups as a basis. This topology

is finer than the pro-finite topology, but it is not discrete. We prove that
every quasiconvex subgroup ∆ < Γ is closed in the normal topology. For a

uniform lattice Γ < PSL2(C) we prove, using the tameness theorem of Agol
and Calegary-Gabai, that every finitely generated subgroup of Γ is closed in
the normal topology.

1. Introduction

In most infinite groups, it is virtually impossible to understand the lattice of all
subgroups. Group theorists therefore focus their attention on special families of
subgroups such as finite index subgroups, normal subgroups, or finitely generated
subgroups. Of special interest, in the setting of word hyperbolic groups, is the
family of quasiconvex subgroups.

Definition 1.1. A subgroup ∆ < Γ of a word hyperbolic group is quasiconvex if
a Γ geodesic between two elements of ∆ stays within uniformly bounded distance
from ∆.

Families of subgroups and especially the interconnections between such families,
are often discussed in topological terms. If N is a collection of subgroups, which is
invariant under conjugation and satisfies the condition

(1) for all N1, N2 ∈ N ∃ N3 ∈ N such that N3 ≤ N1 ∩N2,

then one can define an invariant topology on Γ in which the given family of groups
constitutes a basis of open neighborhoods for the identity element. The most fa-
mous example, the pro-finite topology, is obtained by taking N to be the family
of finite index subgroups. When the family of all infinite normal subgroups satis-
fies condition (1), we refer to the resulting topology as the normal topology.1 The
normal topology is well defined on any hyperbolic group Γ. In fact any two nor-
mal subgroups with trivial intersection commute. When the two normal subgroups
are infinite one can find an infinite order element in each one, producing a Z ⊕ Z
subgroup of Γ. This is impossible in a hyperbolic group.

With this terminology we can state our main theorem.

Theorem 1.2. If Γ is a word hyperbolic group and ∆ < Γ is a quasiconvex sub-
group, then ∆ is closed in the normal topology on Γ.

Date: December 20, 2005.
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1In previous papers [1, 8] the normal topology is defined as the topology of all non-trivial

normal subgroups. In this paper we use the slightly different notation which is especially suitable
in the setting of hyperbolic groups.
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In the special case where Γ is the fundamental group of a compact hyperbolic 3-
orbifold, or in other words when Γ is a uniform lattice in PSL2(C), we use Marden’s
tameness conjecture, recently proved by Agol [2] and by Calegari-Gabai [5], to
prove:

Theorem 1.3. Let Γ < PSL2(C) be a uniform lattice. Then every finitely generated
subgroup of Γ is closed in the normal topology.

Indeed, by the tameness theorem every finitely generated geometrically infinite
subgroup of Γ is a virtual fiber, and therefore closed even in the coarser pro-finite
topology. The proof of Theorem 1.3 is therefore reduced to geometrically finite
subgroups. Since Γ is a uniform lattice it is word hyperbolic and the quasiconvex
subgroups are the same as the geometrically finite subgroups; thus the result follows
from Theorem 1.2.

Remark 1.4. Theorems 1.2 and 1.3 remain true when Γ is a non-uniform lattice
in PSL2(C). In fact once one translates the proof to the more geometric language
of hyperbolic 3-manifolds it easily generalizes to the finite volume case. In an effort
to keep this paper short and its style consistent, we omit the treatment of non-
uniform lattices. A previous version of this paper, that deals only with hyperbolic
3-manifolds, but treats also finite volume manifolds is still available on the arXiv
[10].

It is a well known question whether or not Theorem 1.3 remains true for the
coarser pro-finite topology. Groups in which every finitely generated group is closed
in the pro-finite topology are called locally extended residually finite, or LERF for
short. The list of groups that are known to be LERF is rather short. It includes
lattices in PSL2(R) (see [14]) as well as special examples of lattices in PSL2(C) (see
[9]). The family of lattices in PSL2(C) that are known to be LERF was significantly
extended recently to include all Bianchi groups. In this case too, tameness provides
the last ingredient of the proof. Separability of geometrically finite subgroups was
already established by Agol, Long and Reid in [3]. It is worth noting that there are
word hyperbolic groups that are not LERF (See [11]).

While the normal topology is not as popular as the pro-finite topology, it is
a natural object of study. This topology captures information about all possible
quotients of a given group. The normal topology of a group also plays an important
role in the construction of its faithful primitive permutation representations in [8].
The main technical result of [8] is the construction of proper dense subgroups in the
normal topology. These are called pro-dense subgroups for short. In particular it is
shown that all the groups considered in this paper admit pro-dense subgroups. It
was conjectured in [8, Conjecture 10.2] that proper pro-dense subgroups are never
finitely generated. Theorem 1.3 above proves a strong version of this conjecture for
lattices in PSL2(C). Theorem 1.2 can considered as a first step towards the proof
of the general conjecture.

For lattices in higher rank simple Lie groups the situation is drastically different.
Here the normal topology coincides with the pro-finite topology by Margulis’ normal
subgroup theorem. Furthermore all such lattices are arithmetic by Margulis’ arith-
meticity theorem and therefore one can define congruence subgroups which give
rise to the pro-congruence topology. The congruence subgroup property, which is
proved in many cases including PSLn(Z), implies that even this a priori coarser
topology coincides with the first two. It is remarked by Alex Lubotzky that these
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groups are very far from being LERF. In fact the strong approximation theorem
of Nori [13] and Weisfeiler [17] imply that if a subgroup is Zariski dense then its
closure in any one of these topologies is open. Thus one can find many finitely
generated subgroups that are dense.

Still one question remains open even in PSLn(Z). Note that a maximal subgroup
of infinite index is automatically dense. Margulis and Sŏıfer asked if a maximal
subgroup of infinite index in PSLn(Z), n ≥ 3, can possibly be finitely generated
[12].

The same question can be asked about PSL2(C). A maximal subgroup of infinite
index is still pro-finitely dense but it need not be pro-dense. Thus the following
does not follow formally from Theorem 1.3. Still the same method of proof shows

Corollary 1.5. If Γ < PSL2(C) is a uniform lattice then a maximal subgroup of
infinite index in Γ cannot be finitely generated.

Note that the same corollary has other alternative proofs, once the tameness the-
orem of Agol Calegari-Gabai is assumed. For example it follows from tameness
combined with the results of Arzhantseva in [4], or from tameness combined with
Sŏifer’s proof of Theorem 4.1 in [15].

After the proof of our main Lemma 2.1 it was mentioned to us by F. Haglund
that a similar proof was sketched to him in an e-mail from T. Delzant. Still this
very natural lemma does not seem to appear anywhere in the literature.

The authors would like to thank I. Agol, F. Haglund, I. Kapovich, G. Margulis,
P. Schupp, and G. Sŏıfer.

2. quasiconvex subgroups.

We first state our main lemma and a corollary,

Lemma 2.1. Let Γ be a hyperbolic group, ∆ < Γ a quasiconvex subgroup of infinite
index. Then there exists an infinite normal subgroup N CΓ such that N ∩∆ = 〈id〉.
In addition one can require that Γ/N be hyperbolic, that N ∩Br = {e} where Br is
a ball of a prescribed radius r, and that N will be a free group.

Corollary 2.2. Let Γ be a hyperbolic group and ∆1,∆2, . . . ,∆n a finite number of
quasiconvex subgroups. Then one can find a homomorphism onto an infinite group
φ : Γ → H such that ker φ 6= 〈id〉, but all the ∆i’s as well as a ball of any prescribed
radius r are mapped injectively into H.

Proof. Lemma 2.1 gives rise to Ni C Γ such that Ni ∩∆i = Ni ∩ Br = 〈id〉. Since
the normal topology is well defined on Γ we know that ∩i=1...nNi 6= 〈id〉. �

Terminology. Let us fix a finite set of generators Γ = 〈x1, . . . xn〉. The choice of
generators determines a right Cayley graph CΓ. The standard path metric on CΓ is
δ-hyperbolic for some constant δ that will be fixed throughout. The distance from
the identity in this metric will be denoted by |γ| = d(γ, e). By abuse of notation,
we will use the same notation for a group element γ ∈ Γ and for the corresponding
vertex in the Cayley graph γ ∈ CΓ. Given a subset S ⊂ CΓ we will denote by
Bm(S) = {γ | d(γ, S) < m} its m-neighborhood. The left action of Γ on CΓ will
be denoted by η 7→ γ · η. The minimum translation length of an element γ ∈ Γ is
defined by `(γ) = min{x ∈ CΓ|d(x, γx)}.
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Words and paths. Let Fn = F (x1, . . . , xn) be the free group on the set of gen-
erators of Γ. We will refer to reduced words in Fn simply as words, the length of a
word w ∈ Fn will be denoted by ‖w‖. For every choice of a vertex γ ∈ CΓ there is a
one to one correspondence between words and paths without backtracking starting
in the initial vertex CΓ

Fn × CΓ → Paths(CΓ)
(w, γ) 7→ w̃(γ).

We will use the same notation for infinite rays corresponding to one sided infinite
words.

Quasigeodesics. A finite path α : I → CΓ is called an (E, ε)-quasigeodesic for
some E ≥ 1, ε ≥ 0 if for every two points a, b ∈ I in the interval,

1
E

d(α(a), α(b))− ε ≤ b− a ≤ Ed(α(a), α(b)) + ε.

A one or two sided infinite path is called an (E, ε)-quasigeodesic if all of its finite
subintervals are. If w ∈ Fn is a word we say that it is an (E, ε)-quasigeodesic if
one, and hence any, of its lifts to CΓ are. In a δ hyperbolic space the Hausdorff
distance between two (E, ε)-quasigeodesics connecting the same two points (possibly
boundary points) is bounded. In other words there exists a constant K = K(δ, E, ε)
such that if w1, w2 are two (E, ε)-quasigeodesics (possibly infinite on either side)
connecting the same two points then

(2) H.dist(w̃1(·), w̃2(·)) ≤ K = K(δ, E, ε).

One of the most important features of hyperbolic spaces is that being quasigeodesic
is a local property. Thus if L is large enough, equation (2) holds, with a possibly
larger constant K(δ, E, ε, L), under the weaker assumption that wi’s are L-local
(E, ε)-quasigeodesics. Namely that every subinterval of length ≤ L is an (E, ε)-
quasigeodesic.

Cyclically reduced words. An element γ ∈ Γ is called ε close to being cyclically
reduced if it almost has minimal length within its conjugacy class. Namely |γ| ≤∣∣ηγη−1

∣∣+ε ∀η ∈ Γ. A cyclic conjugate of a word w ∈ Fn is just a cyclic permutation
of its letters, or in other words the conjugate by some suffix of the word. Note that
if w ∈ Fn is a geodesic representation of an element of γ that is ε close to being
cyclically reduced, then so is every cyclic conjugate of w. Thus the word wN is a
‖w‖-local quasigeodesic for every N ∈ N. If ‖w‖ is large enough, every power wn

will be quasigeodesic with quasigeodesic constants depending only on δ and ε (see
also [7, Proposition 3.1]).

Facts about Hyperbolic groups. This section collects some lemmas on hyper-
bolic groups that are needed in the sequel. It is probably a good idea for the reader
who is familiar with the theory to skip to the auxiliary Lemma 2.7 and refer to this
section only if necessary.

Lemma 2.3. Let Γ be a hyperbolic group ∆ < Γ a quasiconvex subgroup of infinite
index then the limit set L∆ of ∆ is a closed subset with empty interior in LΓ.

Proof. By definition, L∆ is closed. Assume, by way of contradiction, that there
exists an open subset V ⊂ L∆. It follows from minimality of the action of ∆ on L∆
that L∆ itself is open. Given x ∈ L∆ there exists a δ ∈ ∆ such that δ · x ∈ V , and
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therefore δ−1V ⊂ L∆ is an open neighborhood of x. Consequently ∆ = ∆ ∪ L∆ is
open in Γ = Γ ∪ LΓ. By minimality of the action of Γ on LΓ we deduce that

Γ =
⋃
γ∈Γ

γ ·∆.

On the group itself this is just the coset decomposition. On the boundary, given
any point ξ ∈ LΓ minimality provides an element γ ∈ Γ such that ξ ∈ γ−1 · L∆.
By compactness of Γ we pass to a finite subcover. Forgetting the boundary now,
we obtain a finite cover of Γ by cosets of ∆, thus proving the lemma. �

Lemma 2.4. There exists a constant C depending only on δ, such that if γ is a
hyperbolic element of translation length `(γ) > C and l = (γ−, γ+) is an infinite
geodesic line connecting its two fixed points then∣∣|γ| − (`(γ) + 2d(e, l))

∣∣ < C.

Proof. Let y ∈ CΓ be a point realizing the minimal translation length, i.e. d(y, γy) =
`(γ). And consider the infinite path l′ = . . . [γ−1y, y][y, γy][γy, γ2y] . . .. This is a
γ invariant C-locally geodesic path from γ− to γ+. If we choose C large enough
this will be an (E, ε)-quasigeodesic path for some constants (E, ε) that depend only
on δ. Consequently H.dist(l, l′) < K(δ, E, ε, C) = K(δ). Note that we ignore the
dependence on C because, after fixing some minimal value, increasing C can only
improve K.

Every point on the path l′ realizes the minimal translation distance so we obtain:

|γ| = d(e, γe) ≤ d(e, l′) + ` + d(γe, l′) = 2d(e, l′) + ` ≤ 2d(e, l) + ` + 2K(δ)

which yields one side of the inequality once we choose C ≥ 2K(δ).
Conversely assume that y ∈ l′ is such that d(e, l′) = d(e, y). Consider a geodesic

triangle 4(e, y, γy) in CΓ. By hyperbolicity there exists a point z ∈ [e, γy] that is
δ-close simultaneously to both other edges. Let v ∈ [e, y] be such that d(v, z) ≤ δ,
and therefore d(v, [y, γy]) ≤ d(v, z) + d(z, [y, γy]) ≤ 2δ. By our choice of the point
y we conclude that d(v, y) ≤ 2δ and hence d(z, y) ≤ 3δ. This shows that

d(e, γy) = d(e, z) + d(z, γy) ≥ d(e, y)− 3δ + d(y, γy)− 3δ = d(e, l′) + `− 6δ.

An identical computation will show that

d(y, γe) ≥ d(e, l′) + `− 6δ.

Adding the last two equations and then using hyperbolicity on the square (e, y, γy, γe)
we conclude that:

2d(e, l′) + 2`− 12δ ≤ d(e, γy) + d(y, γe)
≤ max{d(e, y) + d(γe, γy), d(e, γe) + d(y, γy)}+ 2δ

= max{2d(e, l′), |γ|+ `}+ 2δ

assuming that ` = `(γ) ≥ C > 7δ we can ignore the first option in the maximum
function and deduce that

|γ| ≥ 2d(e, l′) + `− 14δ ≥ 2d(e, l) + `− 14δ − 2K(δ) ≥ 2d(e, l) + `− C.

Where we have made the choice C ≥ 14δ + 2K(δ). This demonstrates the other
side of the inequality and concludes the proof of the lemma. �
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Corollary 2.5. There exists a constant C satisfying the following. If γ is a hyper-
bolic element of translation length `(γ) ≥ C, and a geodesic l connecting the fixed
points of γ passes through the ball Br(e), then γ is 2r + 2C close to being cyclically
reduced.

Proof. Note that translation length is conjugation invariant. We take C to be
the constant provided by Lemma 2.4. The latter provides an upper bound |γ| ≤
`(γ)+2r +C for the length of γ as well as a lower bound on the length of elements
in its conjugacy class |ηγη−1| ≥ `(ηγη)− C = `(γ)− C. The corollary follows. �

Lemma 2.6. There exists a constant C, depending only on δ satisfying the follow-
ing. For any M ∈ N and any open dense subset of the boundary V ⊂ LΓ there exists
a hyperbolic element γ ∈ Γ such that (i) γ is C close to being cyclically reduced,
(ii) γ+, γ− ∈ V , (iii) `(γ) ≥ M .

Proof. Let γ1 be a hyperbolic element and l1 = (γ−1 , γ+
1 ) a geodesic connecting

its two fixed points. Let A+ ⊂ V and A− ⊂ V be disjoint open sets that are
small enough and close enough to γ−1 and γ+

1 so that every geodesic connecting a
point in A− to a point in A+ passes in the ball Br(e), where r is a big enough
constant to make this possible. Fix elements γ′, γ′′ ∈ Γ satisfying γ′γ−1 ∈ A− and
γ′′γ+

1 ∈ A+, and consider the element γ = γ′′γN
1 γ′−1. By choosing N large enough

we can make this element hyperbolic with arbitrarily large translation length. In
particular if C1 is the constant appearing in Corollary 2.5 we can see to it that
`(γ) ≥ max{C1,M}. Furthermore it is easy to check that when N is large the fixed
points of γ will satisfy γ± ∈ A±. By our choice of the neighborhoods A± and by
Corollary 2.5 we deduce that γ is 2r + 2C1 close to being cyclically reduced. We
conclude by setting C ≥ 2r + 2C1. �

An auxiliary lemma.

Lemma 2.7. Let Γ be a hyperbolic group, ∆ < Γ be a quasiconvex subgroup of
infinite index, j ∈ N an integer and O = Bj(Conv ∆) ⊂ CΓ the j-neighborhood of
the convex hull. Then there exists a word w ∈ Fn such that if v is a power of a
cyclic conjugate of w or of w−1, then

(1) for every γ ∈ CΓ the path ṽ(γ) has a short intersection with O:

|ṽ(γ) ∩O| < ‖v‖
10

∀γ ∈ CΓ.

(2) v is quasigeodesic and almost cyclically reduced, with all the constants de-
pending only on δ.

Proof. Fix a number j′ > j and set O′ = Bj′(Conv ∆) ⊂ CΓ; the constant j′ will be
determined later. Since ∆ is finitely generated and quasiconvex there is a finite set
of vertices K such that O′ ⊂ ∆K. After possibly enlarging K we can assume that
it is symmetric (i.e. k ∈ K ⇒ k−1 ∈ K), and contains the identity element e ∈ K.
Since ∆ is quasiconvex of infinite index its limit set L∆ is closed and nowhere dense
in LΓ by Lemma 2.3.

The set
⋃

k∈K k · (L∆) is also closed and nowhere dense. Using Lemma 2.6 there
is constant C = C(δ) such that we can find a hyperbolic element η ∈ Γ which is
C close to being cyclically reduced and whose attracting and repelling fixed points
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satisfy:

{η+, η−} ∩

( ⋃
k∈K

k · (L∆)

)
= ∅.

We can furthermore require the translation length of η to be large enough that
every power of η is an (E, ε)-quasigeodesic where E and ε depend only on δ (and
on C which is itself a function of δ).

Let h be a geodesic word representing η. Consider the infinite sequences of
letters h+∞ = hhh . . . and h−∞ = h−1h−1h−1 . . .. Given any γ ∈ CΓ the infinite
ray h̃±∞(γ) will start at the vertex γ ∈ CΓ and approach the boundary point
γ · η± ∈ ∂Γ. By construction of η, whenever γ ∈ K, we have γ · η± 6∈ L∆. We can
therefore define

M = max
{

m ∈ N
∣∣∣∣h̃m(γ) ∩O′ >

m ‖h‖
20

for some γ ∈ K

}
+ 1.

Thus for every m ≥ M and for every γ ∈ K at most 5% of the path h̃m(γ) will pass
inside O′. Replacing M by a bigger number if necessary we will also assume that
M ≥ 20. We claim that the word w = hM satisfies the conditions of the lemma.

Indeed let v be a cyclic conjugate of some power of w and assume by way of
contradiction that

(3) ṽ(γ) ∩O ≥ ‖v‖
10

for some γ ∈ CΓ. Either the word v or its inverse takes the form v = shhhh . . . t,
where h = ts. As v is a power of h it will be quasigeodesic. By the observation
on proximity of quasigeodesics given in equation (2) there is a bound K(E, ε, δ) on
the Hausdorff distance between any two (E, ε)-quasigeodesics connecting the same
two points. Since the quasigeodesic constants for v depend only on δ, we can write
K(E, ε, δ) = K(δ).

We now define j′ = j + K(δ) so that if ṽ(γ) intersects O in two different points
x, y then the whole segment of the path ṽ(γ) connecting x, y will be contained in
O′. Thus if ṽ(γ) ∩O is large we can assume that ṽ ∩O′ contains a long connected
interval of length at least ‖v‖ /10. Replacing the word v by a cyclic conjugate, and
replacing the point γ accordingly, we can assume without loss of generality that the
first 10% of the path ṽ(γ) is contained in O′. Since by assumption Mge20 we have
‖v‖ ≥ 20 · ‖h‖, thus replacing v again by its cyclic conjugate s−1vs and replacing γ

accordingly we can assume that v = hM while still maintaining |ṽ(γ) ∩O′| > ‖v‖
20 .

But O′ is ∆ invariant, so after replacing γ by some ∆ translate we can assume that
γ ∈ K. This gives a contradiction to equation (3) and completes the proof of the
auxiliary lemma. Indeed, by our choice of M , for any γ ∈ K we have

|ṽ(γ) ∩O′| =
∣∣∣h̃M (γ) ∩O′

∣∣∣ ≤ M ‖h‖
20

=
‖v‖
20

.

�

About the proof of Lemma 2.1. The proof uses Delzant’s small cancellation
theory for hyperbolic groups. Let w be the word provided by the auxiliary Lemma
2.7 and 〈〈wM 〉〉. If the power is high enough then small cancellation theory applies.
A typical element in 〈〈wM 〉〉 assumes the form γ = a1R1a

−1
1 a2R2a

−1
2 . . . alRla

−1
l

where all the R′
is are cyclic conjugates of wM . While this word will not be quasi-

geodesic, Greendlinger’s lemma assures us that large parts of some of the Ri’s pass
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close to any equivalent geodesic word. If γ ∈ ∆ this will mean that a large part of
a cyclic conjugate of wM lies close to the group ∆ which stands in contradiction to
the choice of w.

Proof of Lemma 2.1.

Proof. Given a quasiconvex subgroup ∆ < Γ, there is by definition a constant J
such that every geodesic path connecting two points of ∆ will pass inside the J-
neighborhood of ∆. Choose a word w ∈ Fn satisfying the conclusion of Lemma
2.7. We will determine the parameter j from this lemma later, taking care that
our choice depends only on δ. Recall that j is the vicinity of Conv ∆ which does
not contain long parts of w or its powers. For any given number m, let vm be
the element of minimal length in the conjugacy class of wm, and let Rm be the
collection of all cyclic conjugates of vm and of v−1

m . Note that by Lemma 2.7, wm

and all of its cyclic conjugates are quasigeodesic and almost cyclically reduced with
constants that depend only on δ. Combining this with the estimate on proximity of
quasigeodesics in equation (2) we conclude the following: There exists a constant
K(δ) such that for every R ∈ Rm there exists a word s ∈ Fn of length ‖s‖ ≤ K(δ)
and a cyclic conjugate w′ of w, such that R and sw′ms−1 represent the same
elements of γ, and furthermore

(4) H.dist(R̃(e), ˜sw′ms−1(e)) ≤ K(δ)

We can now specify the choice for j in Lemma 2.7

j = J + K(δ) + 10δ.

By [7, Theorem 3.2] there exists some very big integer M such that for all k ∈ N
the set RkM satisfies the small cancellation condition C ′(1/10k) as it is defined in
[7, Section 2.1]. Fix some k ∈ N whose exact value will be determined later and
set v = vkM , R = RkM . If k is big enough, the normal subgroup N = 〈〈RkM 〉〉
generated by R will satisfy all the conditions of the lemma.

Delzant’s small cancellation theorem [7, Theorem 2.1] implies that Γ/N is infi-
nite, word hyperbolic and that N is a free group. Furthermore the same theorem
implies that if k is chosen so that (1/4) minR∈R(|R|)− 1000δ ≥ r then the ball Br

of radius r will inject into Γ/N .
The fact that N ∩ ∆ = 〈id〉 follows from Delzant’s version of Greendlinger’s

lemma. Assume by way of contradiction that e 6= γ ∈ N ∩∆. Since γ ∈ N we can
find a word representing γ of the form

(5) u1 = a1R1a
−1
1 a2R2a

−1
2 . . . alRla

−1
l ,

where each ai is a word that does not contain more than half of a relation R ∈ R
and each Ri ∈ R. In other words each Ri is a cyclic conjugate of v or of v−1.
We can furthermore assume that the above presentation of γ is shortest in the
sense that l is minimal. The path ũ1(e), connecting e and γ is not quasigeodesic,
however Greendlinger’s Lemma [7, Lemma 2.4] combined with standard estimates
in δ-hyperbolic spaces [7, Proposition 1.3.4] implies that there exists 1 ≤ i0 ≤ l,
such that a portion of that path, within the section labelled Ri0 , of length at least
(1− 3

10k ) |Ri0 |−300δ lies in the 10δ-neighborhood of any geodesic connecting e and
γ. We can always assume that k was chosen big enough so that

(1− 3
10k ) |Ri0 | − 300δ >

|Ri0 |
2 .
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Let s be a short word and w′ a cyclic conjugate of w realizing the estimate given
in equation (4). Since Ri0 and sw′kNs−1 represent the same element of γ, so do
the two words u1 and

(6) u′1 = a1R1a
−1
1 a2R2a

−1
2 . . . ai0sw

′kN0s−1a−1
i0

. . . alRla
−1
l .

More specifically the path ũ′1(e) coincides with the path ũ1(e) everywhere except
along the section described by Ri0 in one word and by hw′kMh−1 in the other.
Furthermore along this section the two paths are at most K(δ) apart. Thus we
obtain a section of the word w′M of length at least |Ri0 |

4 inside the 10δ + K(δ)
vicinity of any geodesic connecting e with γ in CΓ. Since both e, γ ∈ ∆ this will be
inside the j = J + K(δ) + 10δ vicinity of the subgroup ∆. This contradiction to
our choice of the word w concludes the proof of the lemma. �

When is a subgroup closed in the normal topology. Before beginning the
proof of Theorem 1.2 let us recall why a subgroup is closed in the normal topology
if and only if it is the intersection of open subgroups. One direction is obvious,
an open subgroup is also closed because its complement is a union of open cosets.
Conversely, applying the definition of the topology, a set S ⊆ Γ is open if and only
if

S =
⋃

NCΓ,|N |=∞

⋃
{γ | γN⊂S}

γN.

(Pick an open neighborhood in S about each point in S to obtain the above union.)
Thus ∆ is closed if and only if it is of the form:

∆ =
⋂

NCΓ,|N |=∞

⋃
{γ | γN∩∆ 6=∅}

γN,

When ∆ is a subgroup,
∆N

def=
⋃

{γ | γN∩∆ 6=∅}

γN

is an open subgroup for every fixed N . Indeed if γ1n1, γ2n2 ∈ ∆N then (γ1n1)−1γ2n2 ∈
γ−1
1 γ2N . We can pick n′1, n

′
2 ∈ N so that γ1n

′
1, γ2n

′
2 ∈ ∆. But (γ1n

′
1)
−1γ2n

′
2 ∈

γ−1
1 γ2N . So the coset γ−1

1 γ2N must appear in the union defining ∆N . Finally the
trivial coset N appears in ∆N in order to account for the identity element in ∆.

Proof of Theorem 1.2.

Proof. Let Γ be a hyperbolic group and ∆ a quasiconvex subgroup. We will show
that ∆ is closed in the normal topology.

If ∆ happens to be of finite index then it is, by definition, open in the pro-finite
topology which is more than what we need. We therefore restrict our attention to
infinite index subgroups. In this case ∆ cannot contain an infinite normal subgroup
of Γ. This is because the limit set of a quasiconvex subgroup of infinite index has
measure zero, whereas every infinite normal subgroup of Γ has a maximal limit set.

We will prove that

(7) ∆ = ∆ def=
⋂

{NCΓ,N
∆}

∆N.

Assume by way of contradiction that there exists an element γ ∈ ∆ \∆. Applying
Lemma 2.1, we find an infinite normal subgroup N C Γ such that ∆ ∩N = id, and
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therefore ∆N = ∆ n N . By the definition of ∆ we know that γ ∈ ∆ ≤ ∆N . Let
γ = δn be the unique way of factoring γ into a product with n ∈ N and δ ∈ ∆. We
recall that every cyclic subgroup of a hyperbolic group is quasiconvex. Lemma 2.1
therefore gives rise to a non-trivial normal subgroup N ′CΓ such that N∩〈n〉 = 〈id〉.
Consider the group M = N ∩N ′. M is nontrivial, as the intersection of non-trivial
normal subgroups, and it intersects ∆ trivially because it is a subgroup of N .
Using the definition of ∆ again, γ ∈ ∆ ≤ ∆M so we can write γ = δ′m with
δ′ ∈ ∆,m ∈ M . But by construction n 6∈ M , so n 6= m. This contradicts the
uniqueness of the factorization γ = δn. �

3. Lattices in PSL2(C)

Two main theorems of hyperbolic geometry.

Theorem 3.1. (Marden Conjecture) [Agol [2], Calegari-Gabai [5]] Let ∆ be a dis-
crete finitely generated torsion-free subgroup of PSL2 C. Then the hyperbolic mani-
fold H3/∆ is topologically tame, i.e. it is homeomorphic to the interior of a compact
manifold with boundary.

Theorem 3.2. (Covering Theorem) [Thurston [16, Ch.9]/Canary [6]] Let Γ <
PSL2 C be a torsion-free lattice. Let ∆ < Γ be a subgroup such that H3/∆ is
topologically tame. Then either
(1) ∆ is geometrically finite, or
(2) there exists a finite index subgroup H ≤ Γ and a subgroup F ≤ ∆ of index one
or two such that H splits as a semidirect product F o Z.

We may now combine Theorems 3.1 and 3.2 with Selberg’s lemma to prove a
strengthened version of the Covering Theorem for lattices with torsion.

Corollary 3.3. Let Γ < PSL2(C) be a lattice. Let ∆ < Γ be a finitely generated
subgroup. Then either
(1) ∆ is geometrically finite, or
(2) there exists a torsion free finite index subgroup H ≤ Γ and a finite index normal
subgroup F E ∆ such that H splits as a semidirect product F o Z.

Proof. Assume ∆ is not geometrically finite. Apply Selberg’s lemma to obtain a
torsion free finite index normal subgroup Γtf ≤ Γ. The subgroup ∆ ∩ Γtf is normal
torsion free and finite index in ∆. Apply Theorems 3.1 and 3.2 to the pair Γtf and
∆ ∩ Γtf.

We know ∆ ∩ Γtf is not geometrically finite. So there is a finite index subgroup
H ≤ Γtf and a subgroup F ≤ ∆ ∩ Γtf of index one or two such that H splits
as a semidirect product F o Z. Since its index is at most two, F is in fact a
characteristic subgroup of ∆ ∩ Γtf, implying it is a normal subgroup of ∆. This
proves the corollary. �

Finitely generated subgroups of uniform lattices in PSL2(C). We are now
ready to prove Theorem 1.3, which we restate here for convenience.

Theorem 1.3. Let Γ < PSL2(C) be a uniform lattice. Then every finitely gener-
ated subgroup of Γ is closed in the normal topology.

Proof. Let Γ < PSL2(C) be a uniform lattice, ∆ < Γ a finitely generated subgroup.
If ∆ is geometrically finite then it is quasiconvex and the result follows directly
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from theorem 1.2. Assume therefore that ∆ is geometrically infinite. In this case
we argue that ∆ is in fact even pro-finitely closed in Γ, which is more than what
we need.

Let us find groups H and F as in Corollary 3.3. Let G = 〈H,∆〉 be the group
generated by H and ∆. Since G is finite index in Γ it is enough to show that ∆
is closed in the pro-finite topology on G. Factoring out by the normal subgroup
F C G, it is enough to show that the finite subgroup ∆/F is pro-finitely closed in
G/F . Note that G/F is virtually cyclic and in particular it is residually finite.

It remains only to observe that any finite subgroup is closed in the pro-finite
topology on a residually finite group. Let Hi C (G/F ) be finite index normal
subgroups with trivial intersection. We claim that ∆/F = ∩iHi(∆/F ). Indeed let
g = h1δ1 = h2δ2 = . . . = hiδi = . . . be any element of this intersection, where
hi ∈ Hi and δi ∈ ∆/F . But there are only finitely many ways to write this element
in the form hiδi, because ∆/F is finite. In particular there exists some h ∈ G/F
such that hi = h for infinitely many i’s. But ∩Hi = 〈id〉 so h = id and g ∈ ∆/F . �
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