Department of Mathematics, BGU

Colloquium

On Tuesday, November , 82016
At 14:30-15:30
In Math 101-

Aflred Inselberg (San Diego Supercomputing Center and Tel Aviv University)
will talk about

VISUALIZING \mathbb{R}^{N} AND SOME NEW DUALITIES

Abstract:

\&) Visualizing \mathbb{R}^{N} and some new Dualities

Alfred Inselberg
School of Mathematical Sciences
Tel Aviv University
Tel Aviv, Israel

\mathscr{W} ith parallel coordinates the perceptual barrier imposed by our 3-dimensional habitation is breached enabling the visualization of multidimensional problems. The highlights, interlaced with interactive demonstrations, are intuitively developed showing how M-dimensional objects are recognized recursively from their $(M-1)$-dimensional subsets. It emerges that a hyperplane in N-dimensions is represented by $(N-1)$ indexed points. Points representing lines have two indices, those representing planes in \mathbb{R}^{3} have three indices and so on. In turn, this yields powerful geometrical algorithms (e.g. for intersections, containment, proximities) and applications including classification.

A smooth surface in 3-D is the envelope of its tangent planes each represented by 2 planar points. As a result it is represented by two planar regions, and a hypersurface in N-dimensions by $(N-1)$ regions. This is equivalent to representing a surface by its normal vectors. Developable surfaces are represented by curves revealing the surface characteristics. Convex surfaces in any dimension are recognized by hyperbola-like regions. Non-orientable surfaces yield stunning patterns unlocking new geometrical insights. Non-convexities like folds, bumps, concavities are visible. The patterns persist in the presence of errors. Intuition gained from the \mathbb{R}^{3} representations leads to generalizations for \mathbb{R}^{N} with beautiful new dualities like cusp in $\mathbb{R}^{N} \leftrightarrow(N-1)$ 'swirls" in \mathbb{R}^{2}, "twist" in $\mathbb{R}^{N} \leftrightarrow(N-1)$ cusps in \mathbb{R}^{2}. The methodology extends to spaces of dimension \aleph_{0} and \aleph_{1}.

EYE-CANDY

Figure 1: Exploratory Data Analysis, ground emissions measured by satellite over a region (left) are displayed on the right. In the middle, water (in blue) and the lake's edge (in green) are discovered by the indicated queries.

Figure 2: Detecting Network Intrusion from Internet Traffic Flow Data. Note the many-to-one relations.

Figure 3: (left) Polygonal lines on the first 3 axes represent randomly chosen coplanar points. There is no discernible pattern. (right) Seeing coplanarity! Two points represent a line which is determined from the intersection (two points) of the corresponding two polygonal lines. All straight lines joining these pairs of points intersect. A plane is recognized from the representation of its lines. The recursive visualization generalizes to higher dimensions.

Figure 4: In the background is a dataset with 32 variables and 2 categories. On the left is the plot of the first two variables in the original order, on the right are the best two variables after classification. The algorithms discovers the best 9 variables (features) needed to describe the classification rule, with 4% error, and orders them according to their predictive power.

Figure 5: Square, cube and hypercube in 5-D on the left represented by their vertices and on the right by the tangent planes. Note the hyperbola-like (with 2 assymptotes) regions showing that the object is convex.

Figure 6: In 3-D a surface σ is represented by two linked planar regions $\bar{\sigma}_{123}, \bar{\sigma}_{231^{\prime}}$. They consist of the pairs of points representing all its tangent planes. In N-dimensions a hypersurface is represented by $(N-1)$ regions as the hypercube above.

Figure 7: Developable surfaces are represented by curves. Note the two dualities cusp \leftrightarrow inflection point and bitangent (tangent at two points) plane \leftrightarrow crossing point. Three such curves represent the corresponding hypersurface in 4-D and so on.

Figure 8: Representation of a sphere centered at the origin (left) and after a translation along the x_{1} axis (right) causing the two hyperbolas to rotate in opposite directions illustrating the rotation \leftrightarrow translation duality. In N-D a sphere is represented by $(N-1)$ such hyperbolic regions - pattern repeats as for the hypercube above.

Figure 9: Möbius strip and its representation. Two cusps on the left represent the twist as an "inflectionpoint in 3-D" - see the duality in Fig 7. A tangent plane is represented by the indicated pair of points. The N-dimensional analogue of the of Möbius strip is represented by $(N-1)$ such regions with cusps.

Figure 10: Representation of a surface with two 3-D cusps - only one is visible in the perspective. Each cusp in 3-D is mapped into a pair of "swirls". The two pairs of swirls in the representation show that the surface has two cusps. On the right is a convex surface and its representation by hyperbola-like regions. In general a convex hypersurface in \mathbb{R}^{N} is represented by $(N-1)$ hyperbora-like (each having two assymptotes) regions.

