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W ith parallel coordinates the perceptual barrier imposed byour 3-dimensional habitation is breached
enabling the visualization of multidimensional problems.The highlights, interlaced with interactive
demonstrations, are intuitively developed showing howM-dimensional objects are recognized recursively
from their (M − 1)-dimensional subsets. It emerges thata hyperplane in N-dimensions is represented
by (N− 1) indexed points.Points representing lines have two indices, those representing planes inR

3

have three indices and so on. In turn, this yields powerful geometrical algorithms (e.g. for intersections,
containment, proximities) and applications including classification.

A smooth surface in 3-D is the envelope of its tangent planes each represented by 2 planar points.
As a result it is represented by two planar regions, and a hypersurface inN-dimensions by(N− 1) re-
gions. This is equivalent torepresenting a surface by its normal vectors.Developable surfaces are repre-
sented by curves revealing the surface characteristics.Convex surfaces in any dimensionare recognized
by hyperbola-like regions. Non-orientable surfaces yieldstunning patterns unlocking new geometrical
insights. Non-convexities like folds, bumps, concavitiesare visible. The patterns persist in the presence
of errors. Intuition gained from theR3 representations leads to generalizations forR

N with beautiful
new dualities likecusp in R

N ↔ (N−1) “swirls” in R
2, “twist” in R

N ↔ (N−1) cusps inR
2. The

methodology extends to spaces of dimensionℵ0 andℵ1.

EYE-CANDY

Figure 1: Exploratory Data Analysis, ground emissions measured by satellite over a region (left) are
displayed on the right. In the middle, water (in blue) and thelake’s edge (in green) are discovered by the
indicated queries.



Figure 2: Detecting Network Intrusion from Internet TrafficFlow Data. Note the many-to-one relations.

Figure 3: (left) Polygonal lines on the first 3 axes representrandomly chosen coplanar points. There is no
discernible pattern. (right) Seeing coplanarity! Two points represent a line which is determined from the
intersection (two points) of the corresponding two polygonal lines. All straight lines joining these pairs
of points intersect. A plane is recognized from the representation of itslines. Therecursivevisualization
generalizes to higher dimensions.



Figure 4: In the background is a dataset with 32 variables and2 categories. On the left is the plot of the
first two variables in the original order, on the right are thebest two variables after classification. The
algorithms discovers the best 9 variables (features) needed to describe the classification rule, with 4%
error, and orders them according to their predictive power.
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Figure 5: Square, cube and hypercube in 5-D on the left represented by their vertices and on the right
by the tangent planes. Note the hyperbola-like (with 2 assymptotes) regions showing that the object is
convex.
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Figure 6: In 3-D a surfaceσ is represented by two linked planar regionsσ̄123 , σ̄231′ . They consist of
the pairs of points representing all its tangent planes. InN-dimensions a hypersurface is represented by
(N−1) regions as the hypercube above.

Figure 7: Developable surfaces are represented by curves. Note the two dualitiescusp↔ inflection point
andbitangent (tangent at two points) plane↔ crossing point. Three such curves represent the correspond-
ing hypersurface in 4-D and so on.



Figure 8: Representation of a sphere centered at the origin (left) and after a translation along thex1 axis
(right) causing the two hyperbolas to rotate in opposite directions illustrating therotation↔ translation
duality. In N-D a sphere is represented by(N−1) such hyperbolic regions — pattern repeats as for the
hypercube above.

Figure 9: Möbius strip and its representation. Two cusps onthe left represent thetwist as an “inflection-
point in 3-D” – see the duality in Fig 7. A tangent plane is represented by the indicated pair of points. The
N-dimensional analogue of the of Möbius strip is represented by (N−1) such regions with cusps.



Figure 10: Representation of a surface with two3-D cusps– only one is visible in the perspective. Each
cusp in 3-D is mapped into a pair of ‘‘swirls” . The two pairs of swirls in the representation show that
the surface has two cusps. On the right is a convex surface andits representation by hyperbola-like
regions. In general a convex hypersurface inR

N is represented by(N−1) hyperbora-like (each having
two assymptotes) regions.


