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 Kronecker expansion is obtained
 K K

 A = block(A) = E Sk bl°Ck(Vkuk) = E SkUk ' Vk-
 k=1 k=1

 By (B-2), it is straight-forward to verify the orthogonality of the Uk's and the Vk's.

 Remarks. Since the SVD also determines optimal reduced rank approximations,

 best approximations using a fixed number of Kronecker products can be obtained

 from this Kronecker expansion. The motivation for this Kronecker expansion or

 "block" SVD arose in an image-processing application. Illuminating discussions of

 image processing and applications of the SVD, block matrix computations, and

 Kronecker products are found in Gonzalez and Wintz [6] or Jain [5]. An excellent

 treatment of the Kronecker product is found in Horn and Johnson [3]. Further

 generalizations of the Kronecker product and signal-processing applications are
 found in [4], [7], [2], [1].
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 This article presents a simple elementary proof of the following result.
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 This article presents a simple elementary proof of the following result.

 Theorem A. If F: Sn Sn is a polynomial map which is one-to-one, then

 (a) F(C:n) = Sn, and

 (b) F-1 Sn > Sn is also a polynomial map.
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 Here n is a positive integer, and Cn iS the set of all Z - (Z1, , Zn) each z

 lying in the complex field C. In general, the notation ¢: X Y indicates that ¢ is

 a map whose domain is X and whose range lies in Y. To say that F is a polynomial
 map means that F = (f1,..., fn) and each component fi of F is a polynomial,
 mapping Cn into C.

 Theorem A may be regarded as a small step toward a confirmation of the

 so-called Jacobian conjecture, which claims that if F: Cn Cn iS a polynomial

 map whose Jacobian is a non-zero constant, then F is a polynomial automorphism
 of Cnv i.e., F is one-to-one and satisfies (a) and (b). This dates back to 1939 [5] but
 is still unproved (in June 1994), even for n = 2. Its history, many references, and
 some partial results, can be found in [2].

 Theorem A shows that the Jacobian conjecture would be proved if one could

 show, for polynomial maps F: Cn Cn, that "locally one-to-one" implies "glob-

 ally one-to-one." This formulation of the problem points to an interesting differ-
 ence between Cn and i8n: Serguey Pinchuk [8] has (surprisingly!) constructed a
 polynomial map F: i82 > i82 whose Jacobian has no zero in i82 but which is not
 one-to-one. The difference is, of course, that on i8n there are nonconstant
 polynomials without zeros, whereas this cannot happen on Cn.

 Theorem A is not new. In [7] Don Newman proved (a) with i82 in place of Cn.
 In [3] this was extended to i8n, for arbitrary n, with the aid of a good dose of
 homology theory; that paper also contains a brief sketch of the analogous result for
 maps from kn to kn, for arbitrary algebraically closed fields k. Ax [1; Th. 2]
 extended this to morphisms of algebraic varieties, using nonprincipal ultraproducts
 of fields. Theorem (2.1) on p. 294 of [2] lists eight (mostly algebraic) conditions on
 polynomial maps F that are equivalent; Theorem A is one of those equivalences:
 F is one-to-one if and only if F is an automorphism.

 I believe that the proof given here is much simpler than any of the above.
 (Proof: I have no trouble understanding it.) It uses two facts from complex
 analysis:

 Fact 1. If (i) u, v: Cn > C: are polynomials with no common factor of positive
 degree,

 (ii) Q is an open subset of Snv and
 (iii) v(pO) = O at some point pO in Q,

 then Q contains points p at which v(p) - O but u(p) + O.

 This must be prehistoric. A proof can be found on pp. 14, 15 of [11]. Note that it
 fails on Rn.

 Example: u(x, y) = x2 + y2, V(X, y) = x2 + (y _ x)2

 Fact 2. If F satisfies the hypothesis of Theorem A, then the Jacobian of F is + O at
 every point Of Cn.

 This is in fact true for holomorphic maps from open sets in Cn into Cn that are
 locally one-to-one, and it used to be a fairly difficult theorem (see, for instance, [6;
 pp. 86-88]) until Jean-Pierre Rosay published a truly simple proof [9].

 Combined with the inverse function theorem (Th. 9.24 in [10]), Fact 2 implies
 what will actually be used, namely:

 The range F f Cn ) of F is an open subset of Cn .
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 (Remark: That F(C:n) is open is also an immediate consequence of Brouwer's
 "Invariance of Domain" theorem, concerning continuous one-to-one maps from
 RN into RN [4; p. 95] but that theorem is much more difficult than the route via
 Fact 2.)

 We now start the proof.
 Let t1, . . ., fn be the components of F, and let k be the subfield of C

 generated by the coefficients of the polynomials fi. Since k is countable, there are
 only countably many polynomials with coefficients in k. The union of their
 zero-sets (ignoring the zero-polynomial) is thus a countable union of closed sets
 without interior, hence cannot cover the complete metric space Sn. It follows that
 there is a point f in Sn, fixed from now on, with the following property:

 If f: Sn , C is a polyn'omial with coefficients in k, and f(f) = O, then
 ( ) f(z)=O foreveryzinCn.

 Put 71 = F(f ).

 Claim. The extension fields

 k ( rl ) = k ( rl 1 , , rln)

 and

 k(rl, () = k(rl1, . , rln, (1, v (n)

 are equal.

 Here k(rl) is the smallest subfield of C that contains k and 711, . . ., nnv and
 similarly for k(, ().

 If the claim is false, there is an isomorphism f of k(, () into C that fixes every

 element of k(n) but moves some (i. (See the lemma at the end of the paper.) Put

 ) ( f ( (1 ), , (P( (n ) )

 and note that Z + (.

 Since fj(f) = nj is in k(n) and the coefficients of fj are in k, we have, for
 1 <j<n,

 ti ( ( ) 'P ( tj ( ( 1 v (n ) ) ty ( 'P ( ( 1 ) v (P ( (n ) ) fj ( (R) ) .

 Hence F(f) = F(Z), which contradicts the assumption that F is one-to-one. This
 proves the claim.

 In particular, each fj is in k(n). This means that there are polynomials u;, v;,
 with coefficients in k, and without common factors of positive degree, such that
 Vj(71) + O and

 fj = u;(rl)/v;(rl) (1 < j < n). (1)

 Thus fjvj(F(f)) - uj(F(f)) = O. Property (*) implies now that

 zjvj(F(z))=uj(F(Z)) (1<j<n,zESn). (2)

 Put Q = F(Sn). We saw, as a consequence of Fact 2, that Q is open. If v; had a

 zero in Q, Fact 1 would imply that there is a point in Q where v; = O but u; + O,
 contradicting (2).
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 Hence vj o F: ¢n ¢ is a polynomial without zeros, hence is constant, hence

 each v; is constant. Without loss of generality, Vj = 1. Putting

 G=(ul,...,u,), (3)

 (2) becomes

 G(F(z)) = z for all z in ¢n. (4)

 Hence F(G(F(z))) = F(z). This says that F° G is the identity map on Q. If two
 polynomials agree on Q, they agree on ¢n. Thus

 F(G(w)) = w for all w in ¢n (5)

 The theorem follows from (4) and (5), with F- 1 = G.

 Lemma. Suppose that a is a subfield of ¢, f1, . *, fm are in ¢, and t =
 F((1, . ., (wl) Then either E1 = , or there is an isomorphism f of t into (C
 that fixes every element of F but moves at least one Wi.

 Proof. Assume t + E. Then there is a nonempty subset of {(1,. . .7 fm} say
 (f1, . . ., fj) (after reordering) that is minimal with respect to the property

 X = ((1 * * * ' (i)

 Put 2 = (e11 . . . S (j- l) (This is F when j = 1.) Then

 t t C 2((j) = t-

 Let f fix every element of t and choose qD((;) as follows:
 If 4, is transcendental over , let ((j) be any complex number + ( that is

 also transcendental over t (such as 1 + fj).
 If (, is algebraic over 2, with minimal polynomial p(x), let ((,) be another

 root of p(x).

 To every w in g corresponds a rational function r, with coefficients in 2

 such that w = r(4,). Setting (w) = r(f(g:j)) gives the desired isomorphism.
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