TPMA-12 7P 0RNNnY aRRnnn

AP 0RNNY 2IWR

2020 ,73»x73 8 Jvrbw ara
17:30 — 16:10 nvwa

helal/alanm]

ahyahh

P71 NPLRITID Mpnyi
"T-5¥ 1NN

3P o

VOWN? AIXP 772 ¥U¥M X7 12 Rudin, Walter 2w 9m8» 9¥ 9271 231wR2 78PN

M1 N1 7Y RO 0 NPIA2 002317 1 NPTA2 DY ¥ NPORMIID Apny 0P

MI02 V212 122N .MNTOPR MDA 2W NVAWA AR NMPUPDMIPT BEWw) ¥ NODIAN
207919 K2 IR ,IN AR MM NWR R WK



.

Taylor & Francis &/ MAA

v ATHEEATICAL REEDCATHE OF SR
Taylor & Francis Group R e

Injective Polynomial Maps are Automorphisms
Author(s): Walter Rudin

Source: The American Mathematical Monthly, Jun. - Jul., 1995, Vol. 102, No. 6 (Jun. -
Jul., 1995), pp. 540-543

Published by: Taylor & Francis, Ltd. on behalf of the Mathematical Association of
America

Stable URL: https://www.jstor.org/stable/2974770

REFERENCES

Linked references are available on JSTOR for this article:
https://www.jstor.org/stable/2974770?seq=1&cid=pdf-
reference#references__tab_contents

You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

Taylor & Francis, Ltd. and Mathematical Association of America are collaborating with JSTOR
to digitize, preserve and extend access to The American Mathematical Monthly

JSTOR

This content downloaded from
132.72.138.1 on Wed, 25 Nov 2020 18:16:04 UTC
All use subject to https://about.jstor.org/terms



Kronecker expansion is obtained

K K
A = block(A) = Y s, block(v,uf) = Y 5,U, ® V.
k=1 k=1

By (B-2), it is straight-forward to verify the orthogonality of the U,’s and the V) ’s.

Remarks. Since the SVD also determines optimal reduced rank approximations,
best approximations using a fixed number of Kronecker products can be obtained
from this Kronecker expansion. The motivation for this Kronecker expansion or
“block” SVD arose in an image-processing application. Illuminating discussions of
image processing and applications of the SVD, block matrix computations, and
Kronecker products are found in Gonzalez and Wintz [6] or Jain [5]. An excellent
treatment of the Kronecker product is found in Horn and Johnson [3]. Further
generalizations of the Kronecker product and signal-processing applications are
found in [4], [7], [2], [1].
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Injective Polynomial Maps
Are Automorphisms

Walter Rudin

This article presents a simple elementary proof of the following result.

Theorem A. If F: C" — C" is a polynomial map which is one-to-one, then

(a) F(C") =C", and
(b) F~1: C" —» C" is also a polynomial map.

540 NOTES [June-July

This content downloaded from
132.72.138.1 on Wed, 25 Nov 2020 18:16:04 UTC
All use subject to https://about.jstor.org/terms



Here n is a positive integer, and C” is the set of all z = (z,,..., z,), each z;
lying in the complex field C. In general, the notation ®: X — Y indicates that ® is
a map whose domain is X and whose range lies in Y. To say that F is a polynomial
map means that F = (f},..., f,) and each component f; of F is a polynomial,
mapping C” into C.

Theorem A may be regarded as a small step toward a confirmation of the
so-called Jacobian conjecture, which claims that if F: C" — C” is a polynomial
map whose Jacobian is a non-zero constant, then F is a polynomial automorphism
of C" i.e., F is one-to-one and satisfies (a) and (b). This dates back to 1939 [5] but
is still unproved (in June 1994), even for n = 2. Its history, many references, and
some partial results, can be found in [2].

Theorem A shows that the Jacobian conjecture would be proved if one could
show, for polynomial maps F: C” — C”, that “locally one-to-one” implies “glob-
ally one-to-one.” This formulation of the problem points to an interesting differ-
ence between C” and R": Serguey Pinchuk [8] has (surprisingly!) constructed a
polynomial map F: R?> - R? whose Jacobian has no zero in R? but which is not
one-to-one. The difference is, of course, that on R” there are nonconstant
polynomials without zeros, whereas this cannot happen on C”.

Theorem A is not new. In [7] Don Newman proved (a) with R? in place of C".
In [3] this was extended to R", for arbitrary n, with the aid of a good dose of
homology theory; that paper also contains a brief sketch of the analogous result for
maps from k" to k", for arbitrary algebraically closed fields k. Ax [1; Th. 2]
extended this to morphisms of algebraic varieties, using nonprincipal ultraproducts
of fields. Theorem (2.1) on p. 294 of [2] lists eight (mostly algebraic) conditions on
polynomial maps F that are equivalent; Theorem A is one of those equivalences:
F is one-to-one if and only if F is an automorphism.

I believe that the proof given here is much simpler than any of the above.
(Proof: I have no trouble understanding it.) It uses two facts from complex
analysis:

Fact 1. If (i) u,v: C" — C are polynomials with no common factor of positive
degree,

(i) Q is an open subset of C", and

(i) v(py) = 0 at some point p, in Q,
then Q) contains points p at which v(p) = 0 but u(p) # 0.

This must be prehistoric. A proof can be found on pp. 14, 15 of [11]. Note that it
fails on R”.

Example: u(x,y) =x?+y?% v(x,y) =x2+ (y —x)2

Fact 2. If F satisfies the hypothesis of Theorem A, then the Jacobian of F is #+ 0 at
every point of C".

This is in fact true for holomorphic maps from open sets in C” into C” that are
locally one-to-one, and it used to be a fairly difficult theorem (see, for instance, [6;
pp. 86—88)]) until Jean-Pierre Rosay published a truly simple proof [9].

Combined with the inverse function theorem (Th. 9.24 in [10]), Fact 2 implies
what will actually be used, namely:

The range F(C") of F is an open subset of C".
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(Remark: That F(C") is open is also an immediate consequence of Brouwer’s
“Invariance of Domain” theorem, concerning continuous one-to-one maps from
RY into R" [4; p. 95] but that theorem is much more difficult than the route via
Fact 2.)

We now start the proof.

Let fy,...,f, be the components of F, and let k be the subfield of C
generated by the coefficients of the polynomials f;. Since k is countable, there are
only countably many polynomials with coefficients in k. The union of their
zero-sets (ignoring the zero-polynomial) is thus a countable union of closed sets
without interior, hence cannot cover the complete metric space C”. It follows that
there is a point ¢ in C”, fixed from now on, with the following property:

o fe- C is a polyrnomial with coefficients in k, and f(¢) = 0, then
(*) f(2) = 0 for every z in C".

Put n = F(¢).

Claim. The extension fields

k(m) =k(ny,---m,)

and

k("?,g) =k(771’---,77n,§1,---,§,,)

are equal.

Here k(n) is the smallest subfield of C that contains k£ and 7,,...,7,, and
similarly for k(x, £).

If the claim is false, there is an isomorphism ¢ of k(n, £) into C that fixes every
element of k(n) but moves some ¢,. (See the lemma at the end of the paper.) Put

o =(e(&),.. (&)

and note that w # ¢.
Since fi(¢) = m; is in k(n) and the coefficients of f; are in k, we have, for
1<j<n,

(&) = o(fi(£rs- s &) = Fi(e(£1), -, 0(€,)) = fi(w).

Hence F(¢) = F(w), which contradicts the assumption that F is one-to-one. This
proves the claim.

In particular, each ¢; is in k(n). This means that there are polynomials u;, v;,
with coefficients in k, and without common factors of positive degree, such that
v,(n) # 0 and

& =ui(m)/v(m) (1<j<n). (1)
Thus &v,(F(¢)) — u,(F(¢)) = 0. Property (*) implies now that
2o (F(2)) =u(F(z)) (1<j=n, zeCm. @)

Put () = F(C"). We saw, as a consequence of Fact 2, that () is open. If v; had a
zero in (), Fact 1 would imply that there is a point in ) where v; = 0 but u; # 0,
contradicting (2).
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Hence v;o F:C" — C is a polynomial without zeros, hence is constant, hence
each v; is constant. Without loss of generality, v; = 1. Putting

G = (uy,...,u,), 3)
(2) becomes
G(F(z)) =2z forall zinC". 4

Hence F(G(F(z))) = F(z). This says that F o G is the identity map on Q. If two
polynomials agree on (), they agree on C”". Thus

F(G(w))=w forallwinC". ®)
The theorem follows from (4) and (5), with F~! = G.
Lemma. Suppose that & is a subfield of C, &,,...,¢, are in C, and %, =

F(&,, ..., E,). Then either F = &, or there is an isomorphism ¢ of &, into C
that fixes every element of F but moves at least one §,.

Proof: Assume %, # . Then there is a nonempty subset of {¢£,,...,¢,}, say
(¢,..., &) (after reordering) that is minimal with respect to the property

Fo = F (£ nk).
Put &, = F(£,,...,¢_ ). (This is & when j = 1.) Then
Fc F e FHE) = S

Let ¢ fix every element of %, and choose ¢(¢;) as follows:

If ¢; is transcendental over &, let ¢(¢)) be any complex number = £; that is
also transcendental over %, (such as 1 + £)).

If ¢ is algebraic over %,, with minimal polynomial p(x), let ¢(¢;) be another
root of p(x).

To every w in &, corresponds a rational function r, with coefficients in %,
such that w = r(¢)). Setting o(w) = r(e(¢))) gives the desired isomorphism.
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