המחלקה למתמטיקה, בן-גוריון

אשנב למתמטיקה

ביום שלישי, 8 בדצמבר, 2020
בשעה 16:10 - 17:30

במרשתת

ההרצאה

העתקות פולינומיאליות ולוגיקה

תינתן על-ידי
מנחם קוג'מן

תקציר: באשנב נדבר על מאמר של Rudin, Walter בו הוא מציע הוכחה קצרה למשפט אקס: העתקה פולינומיאלית חח״״ מהמרוכבים בחזקת n למרוכבים בחזקת n היא על. נציג הוכחה המבוססת על משפט הקומפקטיות מלוגיקה ושלמות של מערכות אקסיומות. תוכלו להחליט בסוף האשנב איזו משתי ההוכחות קצרה יותר, או לא להחליט.

Injective Polynomial Maps are Automorphisms

Author(s): Walter Rudin

Source: The American Mathematical Monthly, Jun. - Jul., 1995, Vol. 102, No. 6 (Jun. Jul., 1995), pp. 540-543
Published by: Taylor \& Francis, Ltd. on behalf of the Mathematical Association of America

Stable URL: https://www.jstor.org/stable/2974770

REFERENCES

Linked references are available on JSTOR for this article:
https://www.jstor.org/stable/2974770?seq=1\&cid=pdf-
reference\#references_tab_contents
You may need to \log in to $\bar{T} S T O R$ to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

Kronecker expansion is obtained

$$
A=\operatorname{block}(\mathbf{A})=\sum_{k=1}^{K} s_{k} \operatorname{block}\left(\mathbf{v}_{k} \mathbf{u}_{k}^{T}\right)=\sum_{k=1}^{K} s_{k} U_{k} \otimes V_{k} .
$$

By (B-2), it is straight-forward to verify the orthogonality of the U_{k} 's and the V_{k} 's.
Remarks. Since the SVD also determines optimal reduced rank approximations, best approximations using a fixed number of Kronecker products can be obtained from this Kronecker expansion. The motivation for this Kronecker expansion or "block" SVD arose in an image-processing application. Illuminating discussions of image processing and applications of the SVD, block matrix computations, and Kronecker products are found in Gonzalez and Wintz [6] or Jain [5]. An excellent treatment of the Kronecker product is found in Horn and Johnson [3]. Further generalizations of the Kronecker product and signal-processing applications are found in [4], [7], [2], [1].

REFERENCES

1. Andrews, H. C. and J. Kane, Kronecker Matrices, Computer Implementation, and Generalized Spectra, Journal of the Association for Computing Machinery, Volume 17, Number 2, (1970) 260-268.
2. Henderson, Harold V. and S. R. Searle, The Vec-Permutation Matrix, the Vec Operator and Kronecker Products: A Review, Linear and Multilinear Algebra, Volume 9 (1981), 271-288.
3. Horn, Roger A. and Charles R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge (1991).
4. Hyland, David C. and Emmanuel G. Collins, Jr., Block Kronecker Products and Block Norm Matrices in Large-Scale Systems Analysis, SLAM Journal of Matrix Analysis and Applications, Volume 10, Number 1 (1989) 18-29.
5. Jain, Anil K. Fundamentals of Digital Image Processing, Prentice Hall (1989).
6. Gonzalez, Rafael C. and Paul Wintz, Digital Image Processing, Addison-Wesley Publishing Company (1977).
7. Regalia, Phillip A. and Sanjuit K. Mitra, Kronecker Products, Unitary Matrices and Signal Processing Applications, SLAM Review, Volume 31, Number 4 (1989) 586-613.

NCCOSC RDTE DIV 574
53560 Hull Street
San Diego, CA 92152-5001
allen@nosc.mil

Injective Polynomial Maps Are Automorphisms

Walter Rudin

This article presents a simple elementary proof of the following result.
Theorem A. If $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a polynomial map which is one-to-one, then
(a) $F\left(\mathbb{C}^{n}\right)=\mathbb{C}^{n}$, and
(b) $F^{-1}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is also a polynomial map.

Here n is a positive integer, and \mathbb{C}^{n} is the set of all $z=\left(z_{1}, \ldots, z_{n}\right)$, each z_{i} lying in the complex field \mathbb{C}. In general, the notation $\Phi: X \rightarrow Y$ indicates that Φ is a map whose domain is X and whose range lies in Y. To say that F is a polynomial map means that $F=\left(f_{1}, \ldots, f_{n}\right)$ and each component f_{i} of F is a polynomial, mapping \mathbb{C}^{n} into \mathbb{C}.

Theorem A may be regarded as a small step toward a confirmation of the so-called Jacobian conjecture, which claims that if $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a polynomial map whose Jacobian is a non-zero constant, then F is a polynomial automorphism of \mathbb{C}^{n}, i.e., F is one-to-one and satisfies (a) and (b). This dates back to 1939 [5] but is still unproved (in June 1994), even for $n=2$. Its history, many references, and some partial results, can be found in [2].

Theorem A shows that the Jacobian conjecture would be proved if one could show, for polynomial maps $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, that "locally one-to-one" implies "globally one-to-one." This formulation of the problem points to an interesting difference between \mathbb{C}^{n} and \mathbb{R}^{n} : Serguey Pinchuk [8] has (surprisingly!) constructed a polynomial map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ whose Jacobian has no zero in \mathbb{R}^{2} but which is not one-to-one. The difference is, of course, that on \mathbb{R}^{n} there are nonconstant polynomials without zeros, whereas this cannot happen on \mathbb{C}^{n}.

Theorem A is not new. In [7] Don Newman proved (a) with \mathbb{R}^{2} in place of \mathbb{C}^{n}. In [3] this was extended to \mathbb{R}^{n}, for arbitrary n, with the aid of a good dose of homology theory; that paper also contains a brief sketch of the analogous result for maps from k^{n} to k^{n}, for arbitrary algebraically closed fields k. Ax [1; Th. 2] extended this to morphisms of algebraic varieties, using nonprincipal ultraproducts of fields. Theorem (2.1) on p. 294 of [2] lists eight (mostly algebraic) conditions on polynomial maps F that are equivalent; Theorem A is one of those equivalences: F is one-to-one if and only if F is an automorphism.

I believe that the proof given here is much simpler than any of the above. (Proof: I have no trouble understanding it.) It uses two facts from complex analysis:

Fact 1. If (i) $u, v: \mathbb{C}^{n} \rightarrow \mathbb{C}$ are polynomials with no common factor of positive degree,
(ii) Ω is an open subset of \mathbb{C}^{n}, and
(iii) $v\left(p_{0}\right)=0$ at some point p_{0} in Ω,
then Ω contains points p at which $v(p)=0$ but $u(p) \neq 0$.
This must be prehistoric. A proof can be found on pp. 14, 15 of [11]. Note that it fails on \mathbb{R}^{n}.

Example: $u(x, y)=x^{2}+y^{2}, v(x, y)=x^{2}+(y-x)^{2}$.
Fact 2. If F satisfies the hypothesis of Theorem A, then the Jacobian of F is $\neq 0$ at every point of \mathbb{C}^{n}.

This is in fact true for holomorphic maps from open sets in \mathbb{C}^{n} into \mathbb{C}^{n} that are locally one-to-one, and it used to be a fairly difficult theorem (see, for instance, [6; pp. 86-88]) until Jean-Pierre Rosay published a truly simple proof [9].

Combined with the inverse function theorem (Th. 9.24 in [10]), Fact 2 implies what will actually be used, namely:

The range $F\left(\mathbb{C}^{n}\right)$ of F is an open subset of \mathbb{C}^{n}.
(Remark: That $F\left(\mathbb{C}^{n}\right)$ is open is also an immediate consequence of Brouwer's "Invariance of Domain" theorem, concerning continuous one-to-one maps from \mathbb{R}^{N} into $\mathbb{R}^{N}[4 ; \mathrm{p} .95]$ but that theorem is much more difficult than the route via Fact 2.)

We now start the proof.
Let f_{1}, \ldots, f_{n} be the components of F, and let k be the subfield of \mathbb{C} generated by the coefficients of the polynomials f_{i}. Since k is countable, there are only countably many polynomials with coefficients in k. The union of their zero-sets (ignoring the zero-polynomial) is thus a countable union of closed sets without interior, hence cannot cover the complete metric space \mathbb{C}^{n}. It follows that there is a point ξ in \mathbb{C}^{n}, fixed from now on, with the following property:
(*)

> If $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is a polynomial with coefficients in k, and $f(\xi)=0$, then $f(z)=0$ for every z in \mathbb{C}^{n}.

Put $\eta=F(\xi)$.
Claim. The extension fields

$$
k(\eta)=k\left(\eta_{1}, \ldots, \eta_{n}\right)
$$

and

$$
k(\eta, \xi)=k\left(\eta_{1}, \ldots, \eta_{n}, \xi_{1}, \ldots, \xi_{n}\right)
$$

are equal.
Here $k(\eta)$ is the smallest subfield of \mathbb{C} that contains k and $\eta_{1}, \ldots, \eta_{n}$, and similarly for $k(\eta, \xi)$.

If the claim is false, there is an isomorphism φ of $k(\eta, \xi)$ into \mathbb{C} that fixes every element of $k(\eta)$ but moves some ξ_{i}. (See the lemma at the end of the paper.) Put

$$
\omega=\left(\varphi\left(\xi_{1}\right), \ldots, \varphi\left(\xi_{n}\right)\right)
$$

and note that $\omega \neq \xi$.
Since $f_{j}(\xi)=\eta_{j}$ is in $k(\eta)$ and the coefficients of f_{j} are in k, we have, for $1 \leq j \leq n$,

$$
f_{j}(\xi)=\varphi\left(f_{j}\left(\xi_{1}, \ldots, \xi_{n}\right)\right)=f_{j}\left(\varphi\left(\xi_{1}\right), \ldots, \varphi\left(\xi_{n}\right)\right)=f_{j}(\omega) .
$$

Hence $F(\xi)=F(\omega)$, which contradicts the assumption that F is one-to-one. This proves the claim.

In particular, each ξ_{j} is in $k(\eta)$. This means that there are polynomials u_{j}, v_{j}, with coefficients in k, and without common factors of positive degree, such that $v_{j}(\eta) \neq 0$ and

$$
\begin{equation*}
\xi_{j}=u_{j}(\eta) / v_{j}(\eta) \quad(1 \leq j \leq n) \tag{1}
\end{equation*}
$$

Thus $\xi_{j} v_{j}(F(\xi))-u_{j}(F(\xi))=0$. Property (*) implies now that

$$
\begin{equation*}
z_{j} v_{j}(F(z))=u_{j}(F(z)) \quad\left(1 \leq j \leq n, z \in \mathbb{C}^{n}\right) \tag{2}
\end{equation*}
$$

Put $\Omega=F\left(\mathbb{C}^{n}\right)$. We saw, as a consequence of Fact 2 , that Ω is open. If v_{j} had a zero in Ω, Fact 1 would imply that there is a point in Ω where $v_{j}=0$ but $u_{j} \neq 0$, contradicting (2).

Hence $v_{j} \circ F: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is a polynomial without zeros, hence is constant, hence each v_{j} is constant. Without loss of generality, $v_{j}=1$. Putting

$$
\begin{equation*}
G=\left(u_{1}, \ldots, u_{n}\right) \tag{3}
\end{equation*}
$$

(2) becomes

$$
\begin{equation*}
G(F(z))=z \text { for all } z \text { in } \mathbb{C}^{n} \tag{4}
\end{equation*}
$$

Hence $F(G(F(z)))=F(z)$. This says that $F \circ G$ is the identity map on Ω. If two polynomials agree on Ω, they agree on \mathbb{C}^{n}. Thus

$$
\begin{equation*}
F(G(w))=w \text { for all } w \text { in } \mathbb{C}^{n} \tag{5}
\end{equation*}
$$

The theorem follows from (4) and (5), with $F^{-1}=G$.
Lemma. Suppose that \mathscr{F} is a subfield of $\mathbb{C}, \xi_{1}, \ldots, \xi_{m}$ are in \mathbb{C}, and $\mathscr{F}_{1}=$ $\mathscr{F}\left(\xi_{1}, \ldots, \xi_{m}\right)$. Then either $\mathscr{F}_{1}=\mathscr{F}$, or there is an isomorphism φ of \mathscr{F}_{1} into \mathbb{C} that fixes every element of \mathscr{F} but moves at least one ξ_{i}.

Proof: Assume $\mathscr{F}_{1} \neq \mathscr{F}$. Then there is a nonempty subset of $\left\{\xi_{1}, \ldots, \xi_{m}\right\}$, say (ξ_{1}, \ldots, ξ_{j}) (after reordering) that is minimal with respect to the property

$$
\mathscr{F}_{1}=\mathscr{F}\left(\xi_{1}, \ldots, \xi_{j}\right) .
$$

Put $\mathscr{F}_{2}=\mathscr{F}\left(\xi_{1}, \ldots, \xi_{j-1}\right)$. (This is \mathscr{F} when $j=1$.) Then

$$
\mathscr{F} \subset \mathscr{F}_{2} \varsubsetneqq \mathscr{F}_{2}\left(\xi_{j}\right)=\mathscr{F}_{1} .
$$

Let φ fix every element of \mathscr{F}_{2} and choose $\varphi\left(\xi_{j}\right)$ as follows:
If ξ_{j} is transcendental over \mathscr{F}_{2}, let $\varphi\left(\xi_{j}\right)$ be any complex number $\neq \xi_{j}$ that is also transcendental over \mathscr{F}_{2} (such as $1+\xi_{j}$).

If ξ_{j} is algebraic over \mathscr{F}_{2}, with minimal polynomial $p(x)$, let $\varphi\left(\xi_{j}\right)$ be another root of $p(x)$.

To every w in \mathscr{F}_{1} corresponds a rational function r, with coefficients in \mathscr{F}_{2}, such that $w=r\left(\xi_{j}\right)$. Setting $\varphi(w)=r\left(\varphi\left(\xi_{j}\right)\right)$ gives the desired isomorphism.

REFERENCES

1. J. Ax, A metamathematical approach to some problems in number theory, Proc. Symp. Pure Math. vol. 20, (1969), AMS (1971), pp. 161-190.
2. H. Bass, E. J. Connell, D. Wright, The Jacobian conjecture: Reduction of degree and formal expansion of the inverse, Bull. AMS 7 (1982), pp. 287-330.
3. A. Bialynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. AMS 13 (1962), pp. 200-203.
4. W. Hurewicz and H. Wallman, Dimension Theory, Princeton Univ. Press, 1948.
5. O. H. Keller, Ganze Cremona-Transformationen, Monats. Math. Physik 47 (1939), pp. 299-306.
6. R. Narasimhan, Several Complex Variables, Univ. of Chicago Press, 1971.
7. D. J. Newman, One-one polynomial maps, Proc. AMS 11 (1960), pp. 867-870.
8. S. Pinchuk, A counterexample to the real Jacobian conjecture, Preprint, May 1994.
9. J.-P. Rosay, Injective holomorphic mappings, Amer. Math. Monthly, 89 (1982), pp. 587-588.
10. W. Rudin, Principles of Mathematical Analysis, 3rd Ed., McGraw-Hill, 1976.
11. W. Rudin, Function Theory in Polydiscs, Benjamin, 1969.

Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706-1388

