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The main problem

X smooth projective curve over a number field F of genus g ≥ 2.

Effective Mordell problem:

Find a terminating algorithm: X 7→ X (F )

The effective Mordell conjecture (Szpiro, Vojta, ABC, ...) makes
this precise using height inequalities:

h(x) ≤ C (X ,F )

for all x ∈ X (F ) and some (more or less) specific C .

The non-abelian method of Chabauty is concerned with
non-Archimedean analogues using moduli of principal bundles and
non-abelian Hodge theory.



Principal bundles in Diophantine geometry: a little history

Weil in 1929 constructed an embedding

j : X ⊂ - JX ,

where JX is an abelian variety of dimension g .

That is, over C,

JX (C) = Cg/Λ = H0(X (C),Ω1
X (C)))∗/H1(X ,Z).

The map j is defined over C by fixing a basepoint b and

j(x)(α) =

∫ x

b
α mod H1(X ,Z),

for α ∈ H0(X (C),Ω1
X (C)).



Principal bundles in Diophantine geometry: a little history

But Weil’s point was that JX is also a projective algebraic variety
defined over F , and if b ∈ X (F ), then the map j is also defined
over F .

The reason is that JX is a moduli space of line bundles of degree 0
on X and

j(x) = O(x)⊗O(−b).

The main application is that

j : X (F ) ⊂ - J(F ).

Weil also proved that J(F ) is a finitely-generated abelian group,
and hoped, without success, that this could be somehow used to
control X (F ).



Principal bundles in Diophantine geometry: a little history

In the 1938 paper ‘Généralisation des fonctions abéliennes’, Weil
studied

BunX (GLn) = GLn(K (X ))\GLn(AK(X ))/[
∏
x

GLn(Ôx)]

as a ‘non-abelian Jacobian’.

Proved a number of foundational theorems, including the fact that
vector bundles of degree zero admit flat connections, beginning
non-abelian Hodge theory.



Principal bundles in Diophantine geometry: a little history

This paper was very influential in geometry, leading to the paper of
Narsimhan and Seshadri:

BunX (GLn)st0 ' H1(X ,U(n))irr .

This was extended by Donaldson, influencing this work on smooth
manifolds and gauge theory, and by Simpson to

Higgs(GLn) ' H1(X ,GLn).

Serre on Weil’s paper:

‘a text presented as analysis, whose significance is
essentially algebraic, but whose motivation is arithmetic’



Arithmetic principal bundles

Go back to Hodge theory of Jacobian:

X (C) - JX (C) ' Ext1MHS ,Z(Z,H1(X (C),Z)).

X (F ) - JX (F )⊗ Zp ' Ext1Gal(Q̄/F ),f
(Zp,H

et
1 (X̄ ,Zp))

' H1
f (Gal(Q̄/F ), πp,ab1 (X̄ , b)).

This suggests the possibility of extending the constructions to
non-abelian homotopy and moduli space of non-abelian structures:

– over C, Hain’s ‘higher Albanese varieties;’

– over Fv/Qp, p-adic period spaces;

– over global fields, Selmer schemes and variants.



Arithmetic principal bundles

Construction generally proceeds via a category C of sheaves on X̄
such that points b ∈ X̄ give fibre functors

Fb : C - V.

Then we get
πC(X̄ , b) := Aut∗(Fb)

and
πC(X̄ ; b, x) = Isom∗(Fb,Fx),

which is a principal bundle for πC(X̄ , b).

The basic case is when C is the category of finite étale covering
spaces, and V, the category of finite sets, which leads to profinite
π̂(X̄ , b) and π̂(X̄ ; b, x).



Arithmetic principal bundles
When we use the Tannakian category

Un(X̄ ,Qp)

of unipotent Qp-local systems, there are the fibre functors

Fb,Fx : Un(X̄ ,Qp) - VectQp

and we get the Qp pro-unipotent completions

U(X̄ , b) := Aut⊗(Fb),

P(X̄ ; b, x) := Isom⊗(Fb,Fx).

The role of the universal covering space is played by the universal
unipotent Qp-local system E pointed at b, which is equipped with a
comultiplication

∆ : E - E ⊗ E .



Arithmetic principal bundles

U(X̄ , b) = Egpb := {a ∈ Eb | ∆(a) = a⊗ a};

P(X̄ ; b, x) = Egpx := {p ∈ Ex | ∆(p) = p ⊗ p}.



Arithmetic principal bundles

One can consider many other fundamental groups, for example,

πL(X̄ , b)

the completion with respect to a specific local system L: Tannaka
group of the Tannakian category generated by L. (Lawrence and
Venkatesh)

There is also the relative completion

πRL(X̄ , b),

the Tannaka group of the category generated by L allowing
extensions. (Noam Kantor’s Oxford thesis.)

One can also consider reductive completions, algebraic completions,
or more complicated homotopy types, e.g., differential graded
algebras and modules in suitable homotopy categories.



Arithmetic principal bundles

Key Arithmetic Fact:

When X , b and x are defined over F or Fv , these give rise to
groups abd principal bundles with GF = Gal(F̄/F ) or GFv -action.



Arithmetic principal bundles: the unipotent case

Focus on F = Q and G = Gal(Q̄/Q). (Netan Dogra generalises to
number fields.)

Localisation diagram

X (Q) -
∏
v∈S

X (Qv )

H1
f (G ,U(X̄ , b))

j

?
loc
-

∏
v∈S

H1(Gv ,U(X̄ , b))

∏
v∈S jv

?

The effect is that the moduli spaces become pro-algebraic varieties
over Qp and the lower row of this diagram is an algebraic map.



Arithmetic principal bundles: the unipotent case

That is, the key object of study is

H1
f (G ,U(X̄ , b))

the Selmer scheme of X , defined to be the subfunctor of
H1(G ,U(X̄ , b)) satisfying local conditions at all v : unramified at
v /∈ S and crystalline at p.
The local portion at p of the diagram

X (Qp)

H1
f (Gp,U)

jp

? '
- UDR/F 0

jD
R

-

is computable in terms of p-adic Hodge theory and iterated
integrals, which, in particular, shows that the image is Zariski dense.



Arithmetic principal bundles: the unipotent case

X (Q) -
∏
v∈S

X (Qv )

H1
f (G ,U(X̄ , b))

j

?
loc
-

∏
v∈S

H1(Gv ,U(X̄ , b))

∏
v∈S jv

?

Conjecture:

X (Q) = prp[H1
f (G ,U)×∏

v∈S H1
f (Gv ,U(X ,b)) [

∏
v∈S

X (Qv )]],

where
prp :

∏
v∈S

X (Qv ) - X (Qp).



Arithmetic principal bundles: the unipotent case

X (Q) -
∏
v∈S

X (Qv )

H1
f (G ,U(X̄ , b))

j

?
loc
-

∏
v∈S

H1(Gv ,U(X̄ , b))

∏
v∈S jv

?
α
- Qp

If α is an algebraic function vanishing on the image of loc , then

α ◦
∏
v

jv

gives a defining equation for X (Q) inside
∏

v∈S X (Qv ).



Arithmetic principal bundles: the unipotent case

To make this concretely computable, we take the projection

prp :
∏
v∈S

X (Qv ) - X (Qp)

and try to compute

∩αprp(Z (α ◦
∏
v

jv )) ⊂ X (Qp).

Conjecture (Non-Archimedean effective Mordell)

∩αprp(Z (α ◦
∏
v

jv )) = X (Q)

and this set is effectively computable.



Arithmetic principal bundles: the unipotent case
Some motivation comes from the fact that the previous diagram
breaks into levels

X (Q) -
∏
v

X (Qv )

H1
f (G ,Un(X , b))

j

?
loc
-

∏
v

H1(Gv ,Un(X , b))

∏
v jv

?
αn- Qp

So we could define

X (Qp)n = ∩αnprp(Z (αn))

and conjecture that

X (Q) = ∩nX (Qp)n.



Arithmetic principal bundles: the unipotent case

Standard motivic conjectures (Bloch-Kato, Fontaine-Mazur,...) give
bounds on the dimensions of

H1
f (G ,Un(X , b))

and imply that for each n, there are αn algebraically independent
from the functions αi for i < n.

In fact, many interesting examples give equality already at n = 2.



Diophantine geometry: remark on non-abelian reciprocity

There is a non-abelian class field theory with coefficients in a
fairly general variety X over a number field F generalising CFT
with coefficients in Gm.

This consists (with some simplifications) of a filtration

X (AF ) = X (AF )1 ⊃ X (AF )2 ⊃ X (AF )3 ⊃ · · ·

and a sequence of maps

recn : X (AF )n - Gn(X )

to a sequence of groups such that

X (AF )n+1 = rec−1
n (0).



Diophantine geometry: remark on non-abelian reciprocity

Here,
Gn(X ) = H1(GF ,Hom(Zn(π̂1(X̄ , b)), µ∞))∨,

where Zn refers to the lower central series. The reciprocity maps
measure the obstruction to a collection of local torsors being a
global torsor while going up the levels.



Diophantine geometry: remark on non-abelian reciprocity

· · · rec−1
3 (0) ⊂ rec−1

2 (0) ⊂ rec−1
1 (0) ⊂ X (AF )

|| || || ||

· · · X (AF )4 ⊂ X (AF )3 ⊂ X (AF )2 ⊂ X (AF )1

· · · G4(X )

rec4

?
G3(X )

rec3

?
G2(X )

rec2

?
G1(X )

rec1

?



Diophantine geometry: remark on non-abelian reciprocity

Put
X (AF )∞ = ∩∞n=1X (AF )n.

Theorem (Non-abelian reciprocity)

X (F ) ⊂ X (AF )∞.

Conjecture

prp(X (AF )∞) = X (Q) ⊂ X (Qp).



Computing rational points

[Dan-Cohen, Wewers]

For X = P1 \ {0, 1,∞},

X (Z[1/2]) = {2,−1, 1/2} ⊂ {D2(z) = 0} ∩ {D4(z) = 0},

where
D2(z) = `2(z) + (1/2) log(z) log(1− z),

D4(z) = ζ(3)`4(z) + (8/7)[log3 2/24 + `4(1/2)/ log 2] log(z)`3(z)

+[(4/21)(log3 2/24 + `4(1/2)/ log 2) + ζ(3)/24] log3(z) log(1− z),

and

`k(z) =
∞∑
n=1

zn

nk
.

Numerically, the inclusion appears to be an equality.



Computing rational points

[Balakrishnan, Dan-Cohen, K., Wewers], [Bianchi
arXiv:1904.04622v1]

X = E \ O, where E is an elliptic curve of rank 1 written as

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

α = dx/(2y + a1 + a3), β = xα.

Choose p an ordinary prime of good reduction. S , set of primes of
bad reduction.

Let h : E (Z) - Qpbe the cyclotomic p-adic height, written in
terms of local p-adic Neron functions:

h = λp +
∑
v 6=p

λv .



Computing rational points
For each v ∈ S , have a finite set

Wv = λv (X (Zv )) ∪ {0}

and
W =

∏
v∈S

Wv .

For w = (wv ) ∈W , let

‖w‖ =
∑

wv .

Let c = h(P)/ log2
α(P) for P a point of infinite order, and

C =
a2
1 + 4a2

12
+ E2(E , α),

where E2 is Katz’s p-adic Eisenstein series of weight 2.



Computing rational points

Then

Theorem

X (Z) ⊂ X (Zp)2 = ∪w{
∫ z

b
βα + (c + C/2) log2

α(z) = ‖w‖}

When E has CM, c can be expressed as a ratio of p-adic L-values.

Proposition (Bianchi)

X (Q) ∩ X (Zp)2 = X (Z).

In practice, this can be used to efficiently compute X (Z) by using
several p (Mordell-Weil sieve) [Balakrishnan, Besser, Mueller].



Computing rational points

Given a point z ∈ X (Zp)2 need to figure out which ones are in
X (Q). Write P for a generator of free-part, so we are looking for N
such that

z = NP + torsion ∈ X (Zp)2 ⇒ z ∈ X (Z)

Need to figure out possible N.

If there were such an N, we would have

N = logα z/ logα P.

We can restrict possibilities for N now using several primes.



Computing rational points

[Balakrishnan, Dogra, Mueller, Tuitmann, Vonk (arXiv 1711.05846,
‘Explicit Chabauty-Kim theory for the split modular curve of level
13,’ to be published in Annals of Math.)]

Let
X+
s (N) = X (N)/C+

s (N),

where X (N) is the compactification of the moduli space of pairs

(E , φ : E [N] ' (Z/N)2),

and C+
s (N) ⊂ GL2(Z/N) is the normaliser of a split Cartan

subgroup.

Bilu-Parent-Rebolledo had shown that X+
s (p)(Q) consists entirely

of cusps and CM points for all primes p > 7, p 6= 13. They called
p = 13 the ‘cursed level’.



Computing rational points

Theorem (BDMTV)

X+
s (13)(Q) = X+

s (13)(Q19)2

has exactly 7 points, consisting of the cusp and 6 CM points.

This concludes an important chapter of a conjecture of Serre:

There is an absolute constant A such that

G - Aut(E [p])

is surjective for all non-CM elliptic curves E/Q and primes p > A.



Computing rational points
[Burcu Baran]

y4 + 5x4 − 6x2y2 + 6x3z + 26x2yz + 10xy2z − 10y3z

−32x2z2 − 40xyz2 + 24y2z2 + 32xz3 − 16yz3 = 0

Figure: The cursed curve

{(1:1:1), (1:1:2), (0:0:1), (-3:3:2), (1:1:0), (0,2:1), (-1:1:0) }



Computing rational points
Explain by way of recent work of Dogra, Le Fourn, and Siksek.

We have an exact sequence

0 - ∧2 V /Qp(1) - U2 - V - 0,

where V = Tp ⊗Q and the Qp(1) comes from the Weil pairing.

Suppose one has a correspondence

Z ⊂ X × X

such that
[Z ] ∈ H2(X̄ × X̄ )(1)

lives in ∧2H1(X̄ )(1) = H2(J̄)(1) and the corresponding map

∧2V - Qp(1)

kills Qp(1).



Computing rational points

Then we get a pushout extension

0 - Qp(1) - AZ
- V - 0,

and the diagram

X (Q) -
∏
v

X (Qv )

H1
f (G ,AZ )

j

?
loc
-

∏
v

H1
f (Gv ,AZ )

∏
v jv

?

Denote by
X (Qp)Z ⊂ X (Qp)

the common zero set of functions obtained from this diagram.



Computing rational points

There is a unique line bundle L - J such that

c1(L) = [Z ] ∈ H2(J̄)(1)

and L|X is trivial, so that the choice of a basepoint b̃ ∈ L×e
determines a lifting

L×

X ⊂ -

-

J
?

We can define a p-adic height with respect to L

hL =
∑
v

λv : L×(AQ) - Qp.



Computing rational points

Theorem (Dogra, Le Fourn, Siksek)
Suppose X = X+

0 (N) or X+
ns(N). Then for any homologically

non-trivial Z as above, X (Qp)Z is finite, and can be effectively
computed.

In fact, if
Z =

∑
f

af 1f ,

where f runs over cuspidal eigenforms of weight 2, then X (Qp)Z
can be described by means of an equation

λp(x) =
∑
f

[
h(cf , cf )

logf (c)2 logf (x)(af logf (x) +
∑
g

ag logf (∆g ))]

where c is a Heegner point coming from the modular curve and ∆g

is the Chow-Heegner cycle associated to the modular form g .



Computing rational points

Note that
X (Q) ⊂ X (Qp)2 ⊂ X (Q)Z .

Thus, if X (Q) = X (Qp)Z , get equality everywhere, and conjecture
is verified.

In fact, need only check X (Q) = ∩ZX (Qp)Z .

This was checked recently for X+
s (13), but also for X+

0 (p) when

p = 67, 73, 97, 103, 107, 109

by Jennifer Balakrishnan, Steffen Mueller, Netan Dogra, and Kiran
Kedlaya.

All these examples have rankJ(Q) = g .

Here as well, can try to apply Mordell-Weil sieve to L×(Q).



Some speculations on rational points and critical points

Would like to think of

H1(G ,U(X , b)) -
∏
v

H1(Gv ,U(X , b))

as being like
S(M,G ) ⊂ A(M,G ),

where A is some space of connections and S solutions to
Euler-Lagrange equations.

In particular, functions cutting out the image of localisation should
be thought of as ‘classical equations of motion’ for gauge fields.



Some speculations on rational points and critical points

When X is smooth and projective, X (Q) = X (Z), and we are
actually interested in

Im(H1(GS ,U)) ∩
∏
v∈S

H1
f (Gv ,U) ⊂

∏
v∈S

H1(Gv ,U),

where
H1
f (Gv ,U) ⊂ H1(Gv ,U)

is a subvariety defined by some integral or Hodge-theoretic
conditions.

In order to apply symplectic techniques, replace U by

T ∗(1)U := (LieU)∗(1) o U.



Some speculations on rational points and critical points
Then ∏

v∈S
H1(Gv ,T

∗(1)U)

is a symplectic variety and

Im(H1(GS ,T
∗(1)U)),

∏
v∈S

H1
f (Gv ,T

∗(1)U)

are Lagrangian subvarieties.

Thus, the (derived) intersection

DS(X ) := Im(H1(GS ,T
∗(1)U)) ∩

∏
v∈S

H1
f (Gv ,T

∗(1)U)

has a [−1]-shifted symplectic structure.

Zariski-locally the critical set of a function. [Ben-Basset, Brav,
Bussi, Joyce]



Some speculations on rational points and critical points

X (Z) - j−1
S (DS(X )) ⊂ -

∏
v∈S

X (Qv )

H1
f (GS ,T

∗(1)U)

jg

?
locS - DS(X )

jS

?
⊂ -

∏
v∈S

H1(Gv ,T
∗(1)Un)

jS

?

From this view, the global points can be obtained by pulling back
‘Euler-Lagrange equations’ via a period map.



Some speculations on rational points and critical points

Figure: Pierre de Fermat (1607-1665)


