Department of Mathematics, BGU

Colloquium

On Tuesday, January,10 2023
At 14:30-15:30
In Math 101-

Emanuel Milman (Technion)

will talk about

Multi-Bubble Isoperimetric Problems - Old and New

Abstract

The classical isoperimetric inequality in Euclidean space $\$ \backslash$ mathbb $\{\mathrm{R}\}^{\wedge} \mathrm{n} \$$ states that among all sets ("bubbles") of prescribed volume, the Euclidean ball minimizes surface area. One may similarly consider isoperimetric problems for more general metric-measure spaces, such as on the $\$ n \$$-sphere $\$ \backslash$ mathbb $\{S\}^{\wedge} n \$$ and on $\$ n \$$-dimensional Gaussian space $\$ \backslash$ mathbb $\{G\}^{\wedge} n \$$ (i.e. $\$ \backslash \operatorname{mathbb}\{R\}^{\wedge} n \$$ endowed with the standard Gaussian measure). Furthermore, one may consider the "multi-bubble" isoperimetric problem, in which one prescribes the volume of $\$ \mathrm{p} \backslash \mathrm{geq} 2 \$$ bubbles (possibly disconnected) and minimizes their total surface area - as any mutual interface will only be counted once, the bubbles are now incentivized to clump together. The classical case, referred to as the single-bubble isoperimetric problem, corresponds to $\$ \mathrm{p}=1 \$$; the case $\$ \mathrm{p}=2 \$$ is called the doublebubble problem, and so on.

In ,2000 Hutchings, Morgan, Ritor'e and Ros resolved the double-bubble conjecture in Euclidean space $\$ \backslash$ mathbb $\{R\}^{\wedge} 3 \$$ (and this was subsequently resolved in $\$ \backslash$ mathbb $\{\mathrm{R}\}^{\wedge} \mathrm{n} \$$ as well) - the boundary of a minimizing double-bubble is given by three spherical caps meeting at $\$ 120^{\wedge} \backslash$ circ $\$$-degree angles. A more general conjecture of J. \sim Sullivan from the 1990's asserts that when $\$$ p \backslash leq $n+1 \$$, the optimal multi-bubble in $\$ \backslash$ mathbb $\{\mathrm{R}\}^{\wedge} \mathrm{n} \$$ (as well as in $\$ \backslash$ mathbb $\{\mathrm{S}\}^{\wedge} \mathrm{n} \$$) is obtained by taking the Voronoi cells of $\$ p+1 \$$ equidistant points in $\$ \backslash$ mathbb $\{S\}^{\wedge}\{n\} \$$ and applying appropriate stereographic projections to $\$ \backslash \operatorname{mathbb}\{R\}^{\wedge} n \$$ (and backwards).

In ,2018 together with Joe Neeman, we resolved the analogous multi-bubble conjecture for $\$$ p \backslash leq $n \$$ bubbles in Gaussian space $\$ \backslash$ mathbb $\{G\}^{\wedge} n \$$ - the unique partition which minimizes the total Gaussian surface area is given by the Voronoi cells of (appropriately translated) $\$ \mathrm{p}+1 \$$ equidistant points. In the talk, we describe our approach in that work, as well as recent progress on the multi-bubble problem on $\$ \backslash$ mathbb $\{R\}^{\wedge} n \$$ and $\$ \backslash m a t h b b\{S\}^{\wedge} n \$$. In particular, we show that minimizing bubbles in $\$ \backslash$ mathbb $\{\mathrm{R}\}^{\wedge} \mathrm{n} \$$ and $\$ \backslash$ mathbb $\{\mathrm{S}\}^{\wedge} \mathrm{n} \$$ are always spherical when $\$$ p \backslash leq n , and we resolve the latter conjectures when in addition $\$ \mathrm{p} \backslash$ leq $5 \$$ (e.g. the triple-bubble conjectures when $\$ n \backslash g e q 3 \$$ and the quadruple-bubble conjectures when $\$ \mathrm{n}$ \geq . $4 \$$

