Course Name Algebra 1
Course Number 201.1.7011
Course web page https://www.math.bgu.ac.il/en/teaching/fall2020/courses/algebra-1
Lecturer Dr. Inna Entova-Aizenbud, <entova@bgu.ac.il>, Office 312
Office Hours https://www.math.bgu.ac.il/en/teaching/hours

Requirements and grading

1. General background: sets and operations on them, Complex numbers: definition (via ordered pairs), addition and multiplication, inverses, adjoint, absolute value. Real and complex polynomials and their roots.

2. Fields: Definition, properties, examples: Rationals, reals, complex numbers, integers mod p.

3. Linear equations over fields, matrices and elementary row operations, rank of a matrix, solutions of homogeneous and non homogeneous systems of linear equations and the connections between them.

4. Vector spaces over fields, subspaces, bases and dimensions, coordinates change of coordinate matrix, row rank as rank of a subspace, sums, direct sums of subspaces and the dimension theorem.

5. Matrices multiplication, the algebra of square matrices, inverse determinants: properties, Cramer’s rule, adjoint and its use for finding the inverse.

6. Linear transformations basic properties kernel and image of a linear transformation representation of linear transformations by matrices and the effect of change of bases linear functionals, dual bases

\(^1\)Information may change during the first two weeks of the term. Please consult the webpage for updates
Course topics

1. General background: sets and operations on them, Complex numbers: definition (via ordered pairs), addition and multiplication, inverses, adjoint, absolute value. Real and complex polynomials and their roots.

2. Fields: Definition, properties, examples: Rationals, reals, complex numbers, integers mod p.

3. Linear equations over fields, matrices and elementary row operations, rank of a matrix, solutions of homogeneous and non homogeneous systems of linear equations and the connections between them.

4. Vector spaces over fields, subspaces, bases and dimensions, coordinates change of coordinate matrix, row rank as rank of a subspace, sums, direct sums of subspaces and the dimension theorem.

5. Matrices multiplication, the algebra of square matrices, inverse determinants: properties, Cramer’s rule, adjoint and its use for finding the inverse.

6. Linear transformations basic properties kernel and image of a linear transformation representation of linear transformations by matrices and the effect of change of bases. Linear functionals, dual bases