2020–21–A
Ms. Tamar Pundik
Time and Place:
יום א 12:00 - 09:00
Course topics
- Classification of linear Partial Differential Equations of order 2, canonical form.
- Fourier series (definition, Fourier theorem, odd and even periodic extensions, derivative, uniform convergence).
- Examples: Heat equation (Dirichlet’s and Newman’s problems), Wave equation (mixed type problem), Potential equation on a rectangle.
- Superposition of solutions, non-homogeneous equation.
- Infinite and semi-infinite Heat equation: Fourier integral, Green’s function. Duhamel’s principle.
- Infinite and semi-infinite Wave equation: D’Alembert’s solution.
- Potential equation on the disc: Poisson’s formula and solution as series.
University course catalogue: 201.1.9591
Students' Issues
- Class Representative
- ספיר הורנשטיין
- Aguda Representative
- רכזת סיוע אקדמי - הנדסה ב’ ומכינות - ליאור גבריאל
- Staff Observers