The Department of Mathematics
2017–18–B term

Course Name Calculus 1 for engineering
Course Number 201.1.9711
Lecturer Dr. Irena Lerman, <lerman@bgu.ac.il>, Office מינוס 110
Office Hours [https://www.math.bgu.ac.il/en/teaching/hours](https://www.math.bgu.ac.il/en/teaching/hours)

Requirements and grading

In this course the basic concepts of one-dimensional analysis (a limit, a derivative, an integral) are introduced and explored in different applications: graphing functions, approximations, calculating areas etc. 1. Limit of a function, continuity. 2. Derivative, basic derivative formulas. 3. Derivative of an inverse function; derivative of a composite function, the chain rule; derivative of an implicit function. 4. Derivatives of high order. 5. The mean value problem theorem. Indeterminate forms and l’Hospital’s rule. 6. Rise and fall of a function; local minimal and maximal values of a function. 7. Concavity and points of inflection. Asymptotes. Graphing functions. 8. Linear approximations and differentials. Taylor’s theorem and approximations of an arbitrary order. 9. Indefinite integrals: definition and properties. 10. Integration methods: the substitution method, integration by parts. 11. Definite integrals. The fundamental theorem of integral calculus (Newton-Leibniz’s theorem). 12. Calculating areas. Bibliography Thomas & Finney, Calculus and Analytic Geometry, 8th Edition, Addison-Wesley(World Student Series).

1Information may change during the first two weeks of the term. Please consult the webpage for updates.
Course topics

In this course the basic concepts of one-dimensional analysis (a limit, a derivative, an integral) are introduced and explored in different applications: graphing functions, approximations, calculating areas etc.

1. Limit of a function, continuity.
2. Derivative, basic derivative formulas.
3. Derivative of an inverse function; derivative of a composite function, the chain rule; derivative of an implicit function.
4. Derivatives of high order.
5. The mean value problem theorem. Indeterminate forms and l’Hopital’s rule.
6. Rise and fall of a function; local minimal and maximal values of a function.
8. Linear approximations and differentials. Taylor’s theorem and approximations of an arbitrary order.
9. Indefinite integrals: definition and properties.
10. Integration methods: the substitution method, integration by parts.
12. Calculating areas.