Department of Mathematics, BGU

BGU Probability and Ergodic Theory (PET) seminar

On Thursday, December ,20 2018

At 11:00 – 12:00

In 101-

Ross Pinsky (Technion)

will talk about

A Natural probabilistic model on the integers and its relation to Dickman-type distributions and Buchstab's function

Abstract: Let $\{p_j\}_{j=1}^{\infty}$ denote the set of prime numbers in increasing order, let $\Omega_N \subset \mathbb{N}$ denote the set of positive integers with no prime factor larger than p_N and let P_N denote the probability measure on Ω_N which gives to each $n \in \Omega_N$ a probability proportional to $\frac{1}{n}$. This measure is in fact the distribution of the random integer $I_N \in \Omega_N$ defined by $I_N = \prod_{j=1}^N p_j^{X_{p_j}}$, where $\{X_{p_j}\}_{j=1}^{\infty}$ are independent random variables and X_{p_j} is distributed as $\text{Geom}(1-\frac{1}{p_j})$. We show that $\frac{\log n}{\log N}$ under P_N converges weakly to the *Dickman distribution*. As a corollary, we recover a classical result from classical multiplicative number theory—*Mertens'* formula, which states that $\sum_{n \in \Omega_N} \frac{1}{n} \sim e^{\gamma} \log N$ as $N \to \infty$.

Let $D_{\log-indep}(A) = \lim_{N\to\infty} P_N(A \cap \Omega_N)$ denote the density of $A_{subset}(A)$ arising from $\{P_N\}_{N=1}^{\infty}$, fi it exists. We show that the two densities coincide on a natural algebra of subsets of λB_N . We also show that they do not agree on the sets of $n^{\frac{1}{s}}$ - smooth numbers $\{n \in \mathbb{N} : p^+(n) \leq n^{\frac{1}{s}}\}$, s>1, where $p^+(n)$ is the largest prime divisor of n. This last consideration concerns distributions involving the *Dickman function*. We also consider the sets of n^{Λ} (1){s} *rough numbers* $n^{\Lambda}(n) = n^{\Lambda}(1)$, s>1, where $p^-(n)$ is the smallest prime divisor of n. We also consider the sets of $n^{\Lambda}(1)$ {s} *rough numbers* $n^{\Lambda}(1)$, $p^{-(n)}(p = n^{\Lambda}(1)$, s>1, where $p^{-(n)}(n)$ is the smallest prime divisor of n. We show that the probabilities of these sets, under the unform distribution on $[N]=\{1, N, N\}$ and under the P_N distribution on N ($N=a_N$, have the same asymptotic decay profile as functions of s, although their rates are necessarily different. This profile involves the *Buchstab function*. We also prove a new representation for the Buchstab function.