המחלקה למתמטיקה, בן-גוריון

קולוקוויום

ביום שלישי, 11 בדצמבר, 2018
בשעה 14:30 - 15:30

101-Math

ההרצאה

analytic noncommutative and algebras Operator geometry

תינתן על-ידי
\section*{University) (Waterloo Shamovich Eli}

תקציר: תanalytic of space Hilbert the is $\$ H^{\wedge} 2(\backslash$ mathbb $\{\mathrm{D}\}) \$$ space Hardy The fundamental a is coefficients Taylor summable square with disc unit the on functions multiplication of operator The algebras. operator in and theory function in both object polynomial the over module a into $\$ \mathrm{H}^{\wedge} 2(\backslash \operatorname{mathbb}\{\mathrm{D}\}) \$$ turns function coordinate the by whenever that sense the in universal, is space this Moreover, $\$ \backslash$ mathbb $\{C\}[z] \$$. ring acts $\$ z \$$ that such $\$ \backslash$ mathbb $\{C\}[z] \$$, over $\$ \backslash$ mathcal $\{\mathrm{H}\} \$$ module Hilbert a have we of copies several of quotient a is $\$ \backslash \mathrm{cH} \$$ that have we contraction, row pure a by submodule. a by $\$ \mathrm{H}^{\wedge} 2(\backslash$ mathbb $\{\mathrm{D}\}) \$$ commutative one property, this of generalizations multivariable two are There the ways several in is generalization free the why show will I free. one and space Hardy noncommutative the of quotients discuss then will We one. correct
naturally quotient such Each algebras. operator universal associated their and to question natural a is it and variety analytic noncommutative a to rise gives will I one. algebraic operator the determine data geometric the does extent what question. this to answers several provide analysis complex and spaces Hilbert on operators with familiarity basic Only assumed. is

