המחלקה למתמטיקה, בן-גוריון

קולוקוויום

ביום שלישי, 26 בנובמבר, 2019

15:30 – 14:30 בשעה

101- Math**i**

ההרצאה

the of solutions continuous bounded On rescaling with equation archetypal

תינתן על-ידי

(BGU) Defel Gregory

תקציר:

On bounded continuous solutions of the archetypal equation with rescaling Gregory Derfel

We'll start from a brief general introduction in equations with rescaling, that does not require any prerequisites.

Then we turn to the problem indicated in the title. Namely, we study the "archetypal functional equation $y(x) = \int_{\mathbb{R}^2} y(a(x-b)) \,\mu(da, db) \, (x \in \mathbb{R})$, equivalently, $y(x) = E\{y(\alpha(x-\beta))\}$, where E is expectation with respect to the distribution μ of random coefficients (α, β) .

Particular cases include: (i) $y(x) = \sum_{i} p_i y(a_i(x-b_i))$ and (ii) $y'(x) + y(x) = \sum_{i} p_i y(a_i(x-b_i))$ (pantograph equation), both subject to the balance condition $\sum_{i} p_i = 1$ $(p_i > 0)$.

Existence of non-trivial (i.e. non-constant) bounded continuous solutions is governed by the value $K := \int_{\mathbb{R}^2} \ln |a| \, \mu(da, db) = E\{\ln |\alpha|\}$; namely, under mild technical conditions no such solutions exist whenever K < 0, whereas if K > 0 (and $\alpha > 0$) then there is a non-trivial solution

In the critical case K = 0, we prove a Liouville theorem subject to the uniform continuity of $y(\cdot)$. The latter is guaranteed under a mild regularity assumption on the density of β conditioned on α , which is satisfied for a large class of examples including the pantograph equation (ii).

Further results are obtained in the supercritical case K > 0, including existence, uniqueness and a maximum principle. The case with $P(\alpha < 0) > 0$ is drastically different from that with $\alpha > 0$; in particular, we prove that a bounded solution $y(\cdot)$ possessing limits at $\pm \infty$ must be constant.

The proofs employ martingale techniques applied to the martingale $y(X_n)$, where (X_n) is an associated Markov chain with jumps of the form $x \to \alpha(x - \beta)$.