המחלקה למתמטיקה, בן-גוריון

קולוקוויום

ביום שלישי, 10 בינואר, 2023
בשעה 14:30 - 15:30

101-Math

ההרצאה

and Old - Problems Isoperimetric Multi-Bubble New

תינתן על-ידי
(Technion) Milman Emanuel

תקציר: \$\mathbb $\{R\}^{\wedge}$ ^n\$ space Euclidean in inequality isoperimetric classical The ball Euclidean the volume, prescribed of ("bubbles") sets all among that states for problems isoperimetric consider similarly may One area. surface minimizes $\$ \backslash$ mathbb $\{S\}^{\wedge} n \$ \$ n \$$-sphere the on as such spaces, metric-measure general more $\$ \backslash$ mathbb $\{\mathrm{R}\}^{\wedge} \mathrm{n} \$$ (i.e. $\$ \backslash$ mathbb $\{\mathrm{G}\}^{\wedge} \mathrm{n} \$$ space Gaussian $\$ \mathrm{n} \$$-dimensional on and consider may one Furthermore, measure). Gaussian standard the with endowed volume the prescribes one which in problem, isoperimetric "multi-bubble" the surface total their minimizes and disconnected) (possibly bubbles $2 \$ \mathrm{geq} \$ \mathrm{p}$ of now are bubbles the once, counted be only will interface mutual any as - area
single- the as to referred case, classical The together. clump to incentivized called is $\$ \mathrm{p}=2 \$$ case the $\$ \mathrm{p}=1 \$$; to corresponds problem, isoperimetric bubble on. so and problem, double-bubble the conjecture double-bubble the resolved Ros and Ritor'e Morgan, Hutchings, ,2000 In $\$ \backslash \operatorname{mathbb}\{R\}^{\wedge} n \$$ in resolved subsequently was this (and $\$ \backslash$ mathbb $\{R\}^{\wedge} 3 \$$ space Euclidean in spherical three by given is double-bubble minimizing a of boundary the - well) as Sullivan \sim J. of conjecture general more A angles. $\$ 120^{\wedge} \backslash$ circ $\$$-degree at meeting caps in multi-bubble optimal the $\mathrm{n}+1 \$$, \backslash leq $\$ \mathrm{p}$ when that asserts 1990 's the from Voronoi the taking by obtained is $\$ \backslash$ mathbb $\{S\}^{\wedge} n \$$) in as well (as $\$ \backslash$ mathbb $\{R\}^{\wedge} n \$$ appropriate applying and $\$ \backslash$ mathbb $\{S\} \wedge\{n\} \$$ in points equidistant $\$ p+1 \$$ of cells backwards). (and $\$ \backslash \operatorname{mathbb}\{R\} \wedge n \$$ to projections stereographic multi-bubble analogous the resolved we Neeman, Joe with together ,2018 In unique the - $\$ \backslash$ mathbb $\{G\}^{\wedge} n \$$ space Gaussian in bubbles $n \$ \backslash l e q \$ p$ for conjecture Voronoi the by given is area surface Gaussian total the minimizes which partition describe we talk, the In points. equidistant $\$ \mathrm{p}+1 \$$ translated) (appropriately of cells problem multi-bubble the on progress recent as well as work, that in approach our minimizing that show we particular, In $\$ \backslash \operatorname{mathbb}\{\mathrm{~S}\}^{\wedge} \mathrm{n} \$$. and $\$ \backslash$ mathbb $\{\mathrm{R}\}^{\wedge} \mathrm{n} \$$ on $\$$ p when spherical always are $\$ \backslash$ mathbb $\{S\}^{\wedge} n \$$ and $\$ \backslash$ mathbb $\{R\}^{\wedge} n \$$ in bubbles the (e.g. $5 \$ \backslash$ leq $\$$ p addition in when conjectures latter the resolve we and $n \$$, leq conjectures quadruple-bubble the and $3 \$ \$ n \backslash g e q$ when conjectures triple-bubble
. $4 \$ \$ \mathrm{n} \backslash \mathrm{geq}$ when

