Department of Mathematics, BGU

Combinatorics Seminar

On Tuesday, Fanuary,15 2019
At 10:45-11:45
In 101-

Csaba Toth (CSUN)

will talk about

Polygonizations for Disjoint Line Segments

Abstract

Given a planar straight-line graph $\$ \mathrm{G}=(\mathrm{V}, \mathrm{E}) \$$ in $\$ \backslash \operatorname{mathbb}\{\mathrm{R}\}^{\wedge} 2 \$$, a circumscribing polygon of $\$ \mathrm{G} \$$ is a simple polygon $\$ \mathrm{P} \$$ whose vertex set is $\$ \mathrm{~V} \$$, and every edge in $\$ E \$$ is either an edge or an internal diagonal of $\$ \mathrm{P} \$$. A circumscribing polygon is a $\backslash e m p h\{$ polygonization\} for $\$ \mathrm{G} \$$ fi every edge in $\$ \mathrm{E} \$$ is an edge of \$P\$.

We prove that every arrangement of $\$ \mathrm{n} \$$ disjoint line segments in the plane (i.e., a geometric perfect matching) has a subset of size $\$ \backslash \mathrm{Omega}(\backslash \operatorname{sqrt}\{n\}) \$$ that admits a circumscribing polygon, which is the first improvement on this bound in 20 years. We explore relations between circumscribing polygons and other problems in combinatorial geometry, and generalizations to $\$ \backslash$ mathbb $\{\mathrm{R}\}^{\wedge} 3 \$$.

We show that it is NP-complete to decide whether a given graph $\$ \mathrm{G} \$$ admits a circumscribing polygon, even fi $\$ \mathrm{G} \$$ is 2-regular. Settling a 30 -year old conjecture by Rappaport, we also show that it is NP-complete to determine whether a geometric matching admits a polygonization. (Joint work with Hugo A. Akitaya, Matias Korman, Mikhail Rudoy, and Diane L. Souvaine.)

Please Note the Unusual Time!

