Joint and double coboundaries of transformations – an application of maximal spectral type of spectral measures

Michael Lin, Ben-Gurion University

Jointly with Guy Cohen

Abstract

Let T be a bounded linear operator on a Banach space X; the elements of (I - T)X are called *coboundaries*. For two commuting operators T and S, elements of $(I - T)X \cap (I - S)X$ are called *joint coboundaries*, and those of (I - T)(I - S)X are *double coboundaries*. By commutativity, double coboundaries are joint ones. Are there any other?

Let θ and τ be commuting invertible measure preserving transformations of (Ω, Σ, m) , with corresponding unitary operators induced on $L_2(m)$. We prove the existence of a joint coboundary $g \in (I-U)L_2 \cap (I-V)L_2$ which is not in $(I-U)(I-V)L_2$.

For the proof, let E be the spectral measure on \mathbb{T}^2 obtained by Stone's spectral theorem. Joint and double coboundaries are characterized using E, and properties of the maximal spectral type of E, together with a result of Foiaş on multiplicative spectral measures acting on L_2 , are used to show the existence of the required function.