Piercing edges with subsets in geometric hypergraphs

Bruno Jartoux (BGU)
BGU combinatorics seminar
December 25, 2019

Let P be a finite (nonempty) subset of \mathbf{R}^{n} and $\epsilon>0$ a fixed small parameter. Also let $\mathcal{R} \subset \mathcal{P}\left(\mathbf{R}^{n}\right)$ be a set of 'simple' geometric regions (for example, all halfspaces). Every region $H \in \mathcal{R}$ defines a hyperedge $H \cap P$ in the geometric hypergraph induced by \mathcal{R} on vertex set P, but we consider only those 'heavy' H for which $|H \cap P| \geq \epsilon|P|$.

A subset $N \subset P$ pierces each such 'heavy' hyperedge if

$$
\forall H \in \mathcal{R}, \quad|H \cap P| \geq \epsilon|P| \Longrightarrow P \cap N \neq \emptyset .
$$

This N can have as few as

$$
\begin{equation*}
O\left(\frac{1}{\epsilon} \log \frac{1}{\epsilon}\right) \tag{*}
\end{equation*}
$$

points in total, by the seminal epsilon-net theorem of Haussler and Welzl ('87).
But what if we require that each H include not just a singleton, but a much larger subset? That is, take a collection $\mathcal{M} \subset \mathcal{P}(P)$ such that:

- $\min _{M \in \mathcal{M}}|M| \geq \lambda \epsilon|P|$ for some absolute constant $\lambda>0$,
- every $H \in \mathcal{R}$ such that $|H \cap P| \geq \epsilon|P|$ includes some $M \in \mathcal{M}$.

Under some reasonable conditions on \mathcal{R} we can upper-bound the cardinality of the smallest such \mathcal{M}, mirroring (\star). The proof involves packings in the Hamming cube and polynomial partitioning.

Roadmap

- Geometric hypergraphs: VC dimension and complexity
- Packing lemmas for hyperedges
- Polynomial partitioning
- Putting it all together: an Mnet theorem

Joint work with Kunal Dutta, Arijit Ghosh \& Nabil H. Mustafa.

