ERGODIC THEOREMS FOR CONVOLUTION POWERS

MICHAEL LIN

ABSTRACT let G be a locally complact σ -compact group, with right Haar measure m, and let μ be a regular probability on G. The transition probability $P(t, A) := \mu(t^{-1}A)$ gives rise to the Markov operator

$$Pf(t) = P_{\mu}f(t) := \int_{G} f(ts)d\mu(s) = \mu * f(t).$$

Since (by Fubini) $\int_G Pf(t)dm(t) = \int_G f(t)dm(t)$, the right Haar measure *m* is invariant, and *P* is a contraction of $L_1(G, m)$ and of $L_{\infty}(G, m)$. The dual of *P* as a contraction on $L_1(m)$ is given by convolution (on L_{∞}) with the reflected probability $\check{\mu}(A) := \mu(A^{-1})$.

A bounded (measurable) function h is *invariant* if $\mu * h = h$ a.e.; it is called in our context μ -harmonic. If the only bounded harmonic functions are the constants, we call μ ergodic. A necessary condition for ergodicity is that μ be *adapted* – the closed subgroup generated by the support of μ is G. Clearly μ is adapted if and only if $\check{\mu}$ is adapted. An adapted probability need not be ergodic!

For two probabilities μ and ν we define their convolution by

$$\nu * \mu(A) = \int_G \int_G 1_A(ts) d\nu(t) d\mu(s),$$

and obtain the formula $P_{\nu}P_{\mu} = P_{\nu*\mu}$. Hence the powers of $P = P_{\mu}$ are given by $P_{\mu}^{n} = P_{\mu^{(n)}}$ (convolution powers).

From the general mean ergodic theorem, we have: $\|\frac{1}{n}\sum_{k=1}^{n}\mu^{(n)}*f\|_{1} \to 0$ for every $f \in L_{1}(G,m)$ with $\int_{G} f \, dm = 0$ if and only if $\check{\mu}$ is ergodic.

In this talk we will discuss conditions on μ for the *complete mixing property*: $\|\mu^{(n)} * f\|_1 \to 0$ for every $f \in L_1(G, m)$ with $\int_G f \, dm = 0$.

DEPARTMENT OF MATHEMATICS, BEN-GURION UNIVERSITY, BEER-SHEVA, ISRAEL *E-mail address*: lin@math.bgu.ac.il