
LEMMA 2.14

MOSHE KAMENSKY

cover means definable open cover. If C is a cell decomposition of a space
X, we denote the unique cell containing a point x ∈ X by Cx. For a subset
A of X, we let C(A) be the set of cells in C whose closure intersects A.
Claim 0.0.1. For any A ⊆ X, X(A) =

∪
C(A) is open

Proof. Let x ∈ X(A) and let U be an open neighbourhood of x intersecting
a minimum number of cells. We claim that U ⊆ X(A). Otherwise, let
y ∈ U \ X(A). Then the closure Z of Dy is disjoint from A. If x ∈ Z
then Dx ⊆ Z, contradicting that Dx ∈ C(A). Hence U \ Z is also an open
neighbourhood of x, intersecting less cells (since it does not intersect Dy), a
contradiction. □
Lemma 0.0.2 (=Lemma 2.14). Assume f : X −→ Y is a finite map of
definable spaces with X separable, X a cover of X. Then there is a refinement
W of X and a cover Y of Y , such that

(1) For each Y ∈ Y, f−1(Y ) is a (finite) disjoint union of members of
W

(2) Each member of W is a component of f−1(Y ) for some Y ∈ Y

Proof. We claim that there are cell decompositions D of X and C of Y such
that:

(1) Each D ∈ D is either contained or is disjoint from each X ′ ∈ X , and
similarly for C and f(X ′)

(2) For each D ∈ D, f ↾D is a bijection with some C ∈ C
(3) f−1(C) is a disjoint union of some elements of D, for each C ∈ C

This is achieved by applying Lemmas 2.7 and 2.8 of the paper, to the boolean
algebra of subsets generated by X and its image, respectively. We say that
D ∈ D is over C ∈ C if f(D) = C.

We next construct refined cell decompositions D1 and C1, as follows: if
D ̸= D′ are over the same cell in C, then each is disjoint from the closure
of the other (for example, by dimension). By separation1, we may choose
disjoint open sets U ⊇ D and U ′ ⊇ D′. We do this, and add all such open
sets to the cover X . D1 and C1 are now cell decompositions satisfying the
above conditions with respect to this new cover.

1It is not clear to me what separation axiom we need exactly. According to Wikipedia,
what we are using is called “completely normal”. It follows from regularity under the
second-countable assumption, which we have. OTOH, we actually need a definable version,
so I don’t know if the implication holds...
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Now let X(D) =
∪
D1(D), Y (C) =

∪
C1(C) and W = {X(D)|D ∈

D} and Y = {Y (C)|C ∈ C}. The following claims show they satisfy the
conditions.

Claim 0.0.3. W and Y are covers, and W refines X

Proof. By claim 0.0.1, each of W and Y consists of open subsets. For each
D ∈ D we have D ⊆ X(D), since each D is a union of cells in D1. Hence∪

W = X, so it is a cover (and similarly for Y).
If U ∈ X and D ∈ D is a subset of U , then each element of D1(D) is

also contained in U , since otherwise it would be disjoint from it, hence its
closure could not intersect D. Hence X(D) ⊆ U , so W refines X . □

The following claims show that both conditions hold

Claim 0.0.4. If D,D′ ∈ D are distinct and map to the same cell in C, then
X(D) and X(D′) are disjoint.

Proof. This follows directly from the construction of D1: if X(D) and X(D′)
are not disjoint, neither are D1(D) and D1(D

′). Thus, there is E ∈ D1

whose closure intersects both D and D′, contradicting the choice of U and
U ′ above. □
Claim 0.0.5. For every C ∈ C, f−1(Y (C)) is the disjoint union of X(D)
for D ∈ D mapping to C

Proof. The union is disjoint by the previous claim, and is definitely contained
in the pre-image. Hence it suffices to show that if C ′ ∈ C1(C) for some C ∈ C
and D′ ∈ D1 is over C ′, then D′ ∈ D1(D) for some D ∈ D over C (so that
D′ ⊆ X(D)).

Since C ′ ∈ C1(C), there is a curve γ inside C ′ whose limit is in C. Then
γ lifts to a curve γ̃ in D′, and by properness this curve has a limit x in X.
We take D = Dx. □

□
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