LEMMA 2.14

MOSHE KAMENSKY

cover means definable open cover. If \mathcal{C} is a cell decomposition of a space X, we denote the unique cell containing a point $x \in X$ by C_x . For a subset A of X, we let $\mathcal{C}(A)$ be the set of cells in \mathcal{C} whose closure intersects A.

Claim 0.0.1. For any $A \subseteq X$, $X(A) = \bigcup C(A)$ is open

Proof. Let $x \in X(A)$ and let U be an open neighbourhood of x intersecting a minimum number of cells. We claim that $U \subseteq X(A)$. Otherwise, let $y \in U \setminus X(A)$. Then the closure Z of D_y is disjoint from A. If $x \in Z$ then $D_x \subseteq Z$, contradicting that $D_x \in C(A)$. Hence $U \setminus Z$ is also an open neighbourhood of x, intersecting less cells (since it does not intersect D_y), a contradiction. \Box

Lemma 0.0.2 (=Lemma 2.14). Assume $f : X \to Y$ is a finite map of definable spaces with X separable, \mathcal{X} a cover of X. Then there is a refinement \mathcal{W} of \mathcal{X} and a cover \mathcal{Y} of Y, such that

- (1) For each $Y \in \mathcal{Y}$, $f^{-1}(Y)$ is a (finite) disjoint union of members of \mathcal{W}
- (2) Each member of \mathcal{W} is a component of $f^{-1}(Y)$ for some $Y \in \mathcal{Y}$

Proof. We claim that there are cell decompositions \mathcal{D} of X and \mathcal{C} of Y such that:

- (1) Each $D \in \mathcal{D}$ is either contained or is disjoint from each $X' \in \mathcal{X}$, and similarly for \mathcal{C} and f(X')
- (2) For each $D \in \mathcal{D}$, $f \upharpoonright_D$ is a bijection with some $C \in \mathcal{C}$
- (3) $f^{-1}(C)$ is a disjoint union of some elements of \mathcal{D} , for each $C \in \mathcal{C}$

This is achieved by applying Lemmas 2.7 and 2.8 of the paper, to the boolean algebra of subsets generated by \mathcal{X} and its image, respectively. We say that $D \in \mathcal{D}$ is over $C \in \mathcal{C}$ if f(D) = C.

We next construct refined cell decompositions \mathcal{D}_1 and \mathcal{C}_1 , as follows: if $D \neq D'$ are over the same cell in \mathcal{C} , then each is disjoint from the closure of the other (for example, by dimension). By separation¹, we may choose disjoint open sets $U \supseteq D$ and $U' \supseteq D'$. We do this, and add all such open sets to the cover \mathcal{X} . \mathcal{D}_1 and \mathcal{C}_1 are now cell decompositions satisfying the above conditions with respect to this new cover.

¹It is not clear to me what separation axiom we need exactly. According to Wikipedia, what we are using is called "completely normal". It follows from regularity under the second-countable assumption, which we have. OTOH, we actually need a definable version, so I don't know if the implication holds...

M. KAMENSKY

Now let $X(D) = \bigcup \mathcal{D}_1(D)$, $Y(C) = \bigcup \mathcal{C}_1(C)$ and $\mathcal{W} = \{X(D) | D \in \mathcal{D}\}$ and $\mathcal{Y} = \{Y(C) | C \in \mathcal{C}\}$. The following claims show they satisfy the conditions.

Claim 0.0.3. \mathcal{W} and \mathcal{Y} are covers, and \mathcal{W} refines \mathcal{X}

Proof. By claim 0.0.1, each of \mathcal{W} and \mathcal{Y} consists of open subsets. For each $D \in \mathcal{D}$ we have $D \subseteq X(D)$, since each D is a union of cells in \mathcal{D}_1 . Hence $\bigcup \mathcal{W} = X$, so it is a cover (and similarly for \mathcal{Y}).

If $U \in \mathcal{X}$ and $D \in \mathcal{D}$ is a subset of U, then each element of $\mathcal{D}_1(D)$ is also contained in U, since otherwise it would be disjoint from it, hence its closure could not intersect D. Hence $X(D) \subseteq U$, so \mathcal{W} refines \mathcal{X} . \Box

The following claims show that both conditions hold

Claim 0.0.4. If $D, D' \in \mathcal{D}$ are distinct and map to the same cell in \mathcal{C} , then X(D) and X(D') are disjoint.

Proof. This follows directly from the construction of \mathcal{D}_1 : if X(D) and X(D') are not disjoint, neither are $\mathcal{D}_1(D)$ and $\mathcal{D}_1(D')$. Thus, there is $E \in \mathcal{D}_1$ whose closure intersects both D and D', contradicting the choice of U and U' above.

Claim 0.0.5. For every $C \in C$, $f^{-1}(Y(C))$ is the disjoint union of X(D)for $D \in D$ mapping to C

Proof. The union is disjoint by the previous claim, and is definitely contained in the pre-image. Hence it suffices to show that if $C' \in \mathcal{C}_1(C)$ for some $C \in \mathcal{C}$ and $D' \in \mathcal{D}_1$ is over C', then $D' \in \mathcal{D}_1(D)$ for some $D \in \mathcal{D}$ over C (so that $D' \subseteq X(D)$).

Since $C' \in \mathcal{C}_1(C)$, there is a curve γ inside C' whose limit is in C. Then γ lifts to a curve $\tilde{\gamma}$ in D', and by properness this curve has a limit x in X. We take $D = D_x$.

DEPARTMENT OF MATH, BEN-GURION UNIVERSITY, BE'ER-SHEVA, ISRAEL Email address: mailto:kamenskm@math.bgu.ac.il URL: https://www.math.bgu.ac.il/~kamenskm

 $\mathbf{2}$