2017–18–A

Course Content

  1. Classification of linear Partial Differential Equations of order 2, canonical form.
  2. Fourier series (definition, Fourier theorem, odd and even periodic extensions, derivative, uniform convergence).
  3. Examples: Heat equation (Dirichlet’s and Newman’s problems), Wave equation (mixed type problem), Potential equation on a rectangle.
  4. Superposition of solutions, non-homogeneous equation.
  5. Infinite and semi-infinite Heat equation: Fourier integral, Green’s function. Duhamel’s principle.
  6. Infinite and semi-infinite Wave equation: D’Alembert’s solution.
  7. Potential equation on the disc: Poisson’s formula and solution as series.

University course catalogue: 201.1.9591

Students' Issues

Class Representative
נעמי פוקס
Aguda Representative
רכזת סיוע אקדמי - הנדסה ב’ ומכינות - נופר שלוש
Staff Observers