2020–21–A

Time and Place:

  • יום א 14:00 - 12:00
  • יום ה 12:00 - 10:00

Course topics

  1. Introduction: Sets, subsets, permutations, functions, partitions. Indistinguishable elements, multisets, binary algebra of subsets. Rules of sum and product, convolutions, counting pairs. Binomial and multinomial coefficients. Stirling numbers of second kind, definition and a recurrenat formula.
  2. Graphs: General notions and examples. Isomorphism. Connectivity. Euler graphs. Trees. Cayley’s theorem. Bipartite graphs. Konig’s theorem, P. Hall’s theorem.
  3. The inclusion-exclusion method: The complete inclusion-exclusion theorem. An explicit formula for the Stirling numbers. Counting permutations under constraints, rook polynomials.
  4. Generating functions: General notion, combinatorial meaning of operations on generating functions. Theory of recurrence equations with constant coefficients: the general solution of the homogeneous equation, general and special cases of nonhomogeneity. Catalan numbers. Partitions of numbers, Ferrers diagrams. Exponential generating functions, counting words, set partitions, etc.

University course catalogue: 201.1.2201