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0. Introduction

0. Introduction

In this talk I will explain a geometric result that is a by-product of my
research on deformation quantization.

The original work was in the context of algebraic geometry, but in this
talk I will present it in the context of differential geometry.

Some of the results are very similar in the present context. But other
results – those of arithmetic nature – do not have differentiable
analogues.

The purpose of this talk is to expose the results to a wider audience, in
particular to researchers working in topological dynamics and related
areas.
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1. Basic Facts on Lie Groups

1. Basic Facts on Lie Groups

In this talk we shall discuss real Lie groups.

Let me start be recalling some notions from differential geometry. This
will help us establish a common language.

By manifold I mean a real differentiable manifold (of type C∞).

Given manifolds X and Y, a map of manifolds f : X → Y is a continuous
function that respects the differentiable structures.

Thus, for instance, a map of manifolds f : X → �1 is just a
differentiable function.
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1. Basic Facts on Lie Groups

For a point x in a manifold X we have the tangent space TxX to X at x.
This is an n-dimensional vector space, where n is the dimension of the
manifold X.

We will be interested in Lie groups.

Recall that a Lie group over � is a differentiable manifold G, equipped
with a group structure, such that the operations of multiplication and
inversion are maps of manifolds.

The unit element of a group G is denoted by e.

Suppose G and H are Lie groups. A map of Lie groups f : G → H is a
map of manifolds which is also a group homomorphism.

Amnon Yekutieli (BGU) Sheaves of DG Rings 4 / 49



1. Basic Facts on Lie Groups

An algebraic geometer would say that “Lie groups are group objects in
the category Mfld of real manifolds”.

In fact, I will use the language of categories and functors a bit, because
it will make some concepts more lucid (I hope!).

Let G be a Lie group. The tangent space

g � Lie(G) :� TeG

has more structure than just a vector space – it is a Lie algebra.

A map of Lie groups f : G → H induces a Lie algebra homomorphism

Lie(f ) : g � Lie(G) → h � Lie(H).
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1. Basic Facts on Lie Groups

Let us denote the categories of real Lie groups and real Lie algebras by
LieGrp and LieAlg respectively.

Then the Lie algebra of a group is a functor

Lie : LieGrp → LieAlg .

Given a Lie group G with Lie algebra g, the exponential map

expG : g → G

is a map of manifolds, such that expG(0) � e, and it is a
diffeomorphism near 0 ∈ g.

The exponential map is functorial.
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1. Basic Facts on Lie Groups

By functorial I mean that given a Lie group map f : G → H, the
diagram

g � Lie(G)
expG

//

Lie(f )

��

G

f

��

h � Lie(H)
expH

// H

in Mfld is commutative.

Example 1.1. The Lie group G � GLn(�) has as its Lie algebra
g � gln(�).

This is just the ring Matn×n(�) of n × n matrices, with the commutator
Lie bracket.

The exponential map here is the usual convergent matrix power series

expG(α) �
∑

i≥0

1
i! · α

i.
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1. Basic Facts on Lie Groups

Let G be a Lie group and Z a manifold. Recall that a (left) differentiable
action of G on Z is a map of manifolds

G × Z → Z, (g, z) 7→ g · z

such that g2 · (g1 · z) � (g2 · g1) · z and e · z � z.

Definition 1.2. Let G be a Lie group.

A G-torsor, or principal homogeneous G-space, is a manifold Z, endowed
with a simply transitive differentiable action of the group G.

Note that given any base point z ∈ Z, the map

(1.3) G → Z, g 7→ g · z,

is a diffeomorphism.

Thus a choice of base point z ∈ Z determines an isomorphism of

G-torsors G
≃
−→ Z.
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2. Weighted Averages for Additive Lie Groups

2. Weighted Averages for Additive Lie Groups

Let me recall the usual weighed average, stated in a somewhat unusual
way.

Definition 2.1. By a weight sequence we mean a sequence of numbers

w � (w0 , . . . ,wq) ∈ �
q+1

such that
q∑

i�0

wi � 1 and wi ≥ 0.
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2. Weighted Averages for Additive Lie Groups

Suppose G is an additive Lie group, i.e. G � �n with its additive group
structure.

Sometimes this is called a vector group.

Let Z be a G-torsor.

Given a sequence z � (z0 , . . . , zq) of points in Z, and a weight sequence
w � (w0 , . . . ,wq), we have the usual weighted average

wavG,w(z) ∈ Z.

I will give the formula. Fix an isomorphism of groups G � �n.

To simplify notation, in this case we will use addition for the operation
in G and the action on Z.
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2. Weighted Averages for Additive Lie Groups

Choose some base point z ∈ Z, and define gi ∈ G to be the unique
group element (in this case vector) such that zi � gi + z.

Using the vector space structure on G � �n, we get a group element

g′ :�
∑q

i�0
wi · gi ∈ �

n
� G.

We then let

(2.2) wavG,w(z) � z′ :� g′ + z ∈ Z.

Since
∑q

i�0 wi � 1, the element z′ ∈ Z is independent of the base point z.
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2. Weighted Averages for Additive Lie Groups

Figure: Weighted average for the additive group G � �
2, with q � 2. We are

given a sequence of points z � (z0 , z1 , z2) in the torsor Z, and the weight
sequence w � ( 1

3 ,
1
3 ,

1
3 ).

The weighted average z′ is independent of the base point z.
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2. Weighted Averages for Additive Lie Groups

We all know (or can easily prove) that:

Proposition 2.3. The weighted average for additive groups has these
properties:

1. Functoriality. Suppose G → G′ is a map of additive groups; Z′ is a
G′-torsor; f : Z → Z′ is a G-equivariant map of manifolds; and

z
′ :�

(
f (z0), . . . , f (zq)

)
.

Then
f (wavG,w(z)) � wavG′,w(z

′).

2. Symmetry. wavG,w(z) is invariant under simultaneous
permutation of the sequences w and z.

3. Simpliciality. If wi � 0 for some i, then deleting wi and zi does not
change the average. And if zi � zi+1 for some i, then replacing wi

with wi + wi+1, and then deleting wi+1 and zi+1, does not change
the average.
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2. Weighted Averages for Additive Lie Groups

We want to generalize this averaging process to other connected Lie
groups G.

We will see that this can be done for unipotent groups; but it cannot be
done for some other Lie groups (such as tori).
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3. Unipotent Lie Groups

3. Unipotent Lie Groups

In algebraic geometry one talks about unipotent algebraic groups.

Let me recall the definition.

Then I will translate all to the language of Lie groups.

Let� be a field, and let G be an algebraic group over� (i.e. a finite
type affine group scheme over�).

One calls G a unipotent group if every nonzero finite dimensional
algebraic representation of G over� has a nonzero fixed point.
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3. Unipotent Lie Groups

Consider the algebraic group Un, the algebraic group over� whose
group of�-points is

(3.1) Un(�) �



1 � � · · · �

0 1 � · · · �

0 0 1 · · · �
...

...
...

. . .
...

0 0 0 · · · 1



⊆ GLn(�).

It is known (see [Mi, Theorem 14.5]) that an algebraic group G is
unipotent iff it is isomorphic to a Zariski closed subgroup of Un.
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3. Unipotent Lie Groups

But we want to talk about Lie groups over� � �.

It turns out that if G is a unipotent algebraic group over �, then its
group of �-points G(�), with its structure of a Lie group – say as a
closed subgroup of the Lie group GLn(�) as in (3.1) – is nilpotent and
simply connected.

In fact, there are equivalences between these three categories:

◮ Nilpotent Lie algebras over �.

◮ Unipotent algebraic groups over �.

◮ Nilpotent simply connected Lie groups over �.
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3. Unipotent Lie Groups

The secret behind these equivalences is this:

If G is a unipotent algebraic group over �, with Lie algebra g, then g is
a nilpotent Lie algebra, and there is an isomorphism of algebraic varieties

ExpG : g → G.

The group structure of G is controlled by the Lie bracket of g, via the
Campbell-Baker-Haudorff formula.

Likewise, if G is a nilpotent simply connected Lie group, with Lie
algebra g, then g is a nilpotent Lie algebra, and the exponential map

ExpG : g → G

is an isomorphism of manifolds.

Again the group structure of G is controlled by the Lie bracket of g.
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3. Unipotent Lie Groups

The unipotent algebraic groups have a much richer structure (mostly
seen arithmetically).

But in this talk we only do differential geometry.

Thus we make a definition of convenience:

Definition 3.2. A real Lie group G is called unipotent if it is nilpotent
and simply connected.

Let me emphasize the most important fact about these Lie groups: the
exponential map expG is a diffeomorphism.

Its inverse is logG.
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3. Unipotent Lie Groups

Example 3.3. An additive Lie group G is unipotent.

Indeed, if G � �n as Lie groups, then

G �



1 � � · · · �

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



⊆ Un+1(�) ⊆ GLn+1(�).

In fact, every abelian unipotent Lie group is an additive group. This can be
seen by the exponential map: here

(3.4) expG : (g,+) → (G, · )

is a Lie group isomorphism.
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4. First Approximation of the Average

4. First Approximation of the Average

Let G be a unipotent Lie group and Z a G-torsor.

Suppose w � (w0 , . . . ,wq) is a weight sequence in �, and
z � (z0 , . . . , zq) is a sequence of points in Z.

We want to construct a weighted average wavG,w(z) ∈ Z.

Choose some base point z ∈ Z.

Next, define elements gi ∈ G by the rule zi � gi · z.

For any i let γi :� logG(gi) ∈ g.
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4. First Approximation of the Average

Using the vector space structure of g define

γ :�

q∑

i�0

wi · γi ∈ g.

Next let
g′ :� expG(γ) ∈ G.

The first candidate for the weighed average is the element

(4.1) wavG,w(z) :� g′ · z ∈ Z.

But there is a problem here: this “average” depends on the choice of base point
z !

A calculation shows that this dependence is in the form of commutators.
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4. First Approximation of the Average

In the additive case (i.e. the abelian case) all commutators vanish, so
there is no dependence on the base point.

Another way to explain why all is fine in the additive case is this: here
the exponential map an isomorphism of Lie groups, see formula (3.4).
So the construction of the weighted average in (4.1) is the same as in
Section 2, just written a bit differently.

The question is: how do we get around the dependence on the base point when
the unipotent Lie group G is not abelian?
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5. Improved Formula for the Average

5. Improved Formula for the Average

Continuing with the previous setup, we will do something a little bit
strange.

The sequence z provides us with q + 1 preferred base points
z0 , . . . , zq ∈ Z.

We shall perform the averaging process with respect to each of these
base points.

Thus, for fixed weight sequence w, we will obtain q + 1 possibly
distinct “averages” z′0 , . . . , z

′
q.
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5. Improved Formula for the Average

Here is the explicit formula.

Let gi,j ∈ G be the unique group elements satisfying gi,j · zi � zj.

Then

z′i � expG

(∑q

j�0
wj · logG(gi,j)

)
· zi ∈ Z.

This can be viewed as an operation of weighted symmetrization

wsymG,w :

{
Zq+1 → Zq+1

(z0 , . . . , zq) 7→ (z′0 , . . . , z
′
q).
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5. Improved Formula for the Average

I claim that if we iterate the operation wsymG,w enough times, we end up
with a constant sequence.

The reason is this. Since G is a nilpotent simply connected Lie group, it
has a filtration by closed normal Lie subgroups

G � G0 ⊇ G1 ⊇ · · · ⊇ Gd � {1}

such that each Gi/Gi+1 is an additive Lie group, and the conjugation
action of G on Gi/Gi+1 is trivial.

The number d is at most the dimension of G.
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5. Improved Formula for the Average

A little calculation shows that if the points z0 , . . . , zq are all in the same
Gi-orbit for some i, then the points z′0 , . . . , z

′
q are in the same Gi+1-orbit.

Thus, starting with an arbitrary sequence of points

z � (z0 , . . . , zq),

and repeating the operation wsymG,w d times, we get

wsymd
G,w(z) � (z, . . . , z)

for some z ∈ Z.

Now we can define the weighted average

wavG,w(z) :� z.
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5. Improved Formula for the Average

Theorem 5.1. The averaging process wavG,w described above has the
properties functoriality, symmetry and simpliciality from Proposition 2.3.

This was proved in [Ye2] for unipotent algebraic groups over a field�
of characteristic 0.

The same proof also works for unipotent Lie groups over �.

� � �

The reason I needed this averaging process can only be seen in the
more complicated setting of geometric torsors.

I probably don’t have time to talk about this material. It is in the last
part of the notes, and you are welcome to take a look later.

Amnon Yekutieli (BGU) Sheaves of DG Rings 28 / 49



5. Improved Formula for the Average

What about other connected Lie groups? Do they admit an averaging
process? The answer is no in general.

Exercise 5.2. Consider the abelian Lie group

G :� S1
� T1

� SO2(�),

i.e. the unit circle in the plane.

Prove that there does not exist an averaging process for G-torsors, which
satisfies the properties in Proposition 2.3.

- END -

(Material below is optional.)
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6. Geometric Torsors

6. Geometric Torsors

We are now going to upgrade our geometric setting.

As before, G is a Lie group. Let X be a manifold.

A G-manifold over X is a manifold Z, with a map π : Z → X, and an
action

µ : G × Z → Z

that respects the projection π.

In other words, the diagram

G × Z
µ

//

π ◦pr2
$$

Z

π
��

X

in the category Mfld is commutative.
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6. Geometric Torsors

Given an open set U ⊆ X, let

Z|U :� π−1(U) ⊆ Z.

Then Z|U is a G-manifold over U.

Example 6.1. The trivial G-manifold over X is

Z :� G × X,

with projection π :� pr2.

Definition 6.2. Let Z be a G-manifold over X, and let U ⊆ X be an open
set.

A trivialization of Z over U is an isomorphism

ψ : Z|U
≃
−→ G × U

of G-manifolds over U.
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6. Geometric Torsors

Definition 6.3. A G-torsor (or principal homogeneous space) over X is a
G-manifold π : Z → X which is locally trivial.

Namely, there exists an open covering X �

⋃
i Ui, and for every i there’s

a trivialization
ψi : Z|Ui

≃
−→ G × Ui

of G-manifolds.

Note that the projection π : Z → X is a submersion of manifolds.

The fibers of π are isomorphic to G as G-manifolds.
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6. Geometric Torsors

Figure: A G-torsor π : Z → X. The action is µ.
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6. Geometric Torsors

Suppose π : Z → X is a G-torsor over X, and U ⊆ X is an open set.

A map σ : U → Z that lifts π is called a section of Z over U.

Z

π
��

U
⊆

//

σ

<<

X

We denote the set of all sections of Z over U by Z(U).

In other words, letting Mfld/X be the category of manifolds over X, we
have

Z(U) � HomMfld/X(U,Z).
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6. Geometric Torsors

Proposition 6.4. Let Z be a G-torsor over X, and let U ⊆ X be an open set.

There is a canonical bĳection between the set of sections σ : U → Z and the
set of trivializations

ψ : Z|U
≃
−→ G × U.

Exercise 6.5. Prove this Proposition, and find the formula for this
canonical bĳection. (Hint: see formula (1.3).)

For this reason, the G-torsor π : Z → X is called trivial if there is a
global section σ : X → Z.
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6. Geometric Torsors

Example 6.6. Suppose E is a rank n vector bundle over X.

Consider the frame bundle π : Z → X of E.

By definition, for every open set U ⊆ X, the set of sections σ : U → Z of
Z is the set of trivializations of the vector bundle E|U, namely the set of
vector bundle isomorphisms

ψ : E|U
≃
−→ U ×�n.

Then π : Z → X is a GLn(�)-torsor over X.

The torsor Z is nontrivial iff the vector bundle E is a nontrivial.

Amnon Yekutieli (BGU) Sheaves of DG Rings 37 / 49

7. Geometric Averaging

7. Geometric Averaging

For q ∈ � let ∆q be the q-dimensional combinatorial simplex.

The set of vertices of ∆q is the set

∆
q

0 � {v0 , . . . , vq}.

The q-dimensional geometric simplex is the polyhedron

∆
q(�≥0) :�

{
(a0 , . . . , aq) | a0 + · · · + aq � 1 and ai ≥ 0

}
⊆ �q+1.

A point w ∈ ∆q(�≥0) is precisely a weight sequence (Definition 2.1).

We can view ∆
q

0 as a subset of ∆q(�≥0)
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7. Geometric Averaging

Figure: The geometric simplices ∆q(�≥0) for q � 1, 2, 3.
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7. Geometric Averaging

The geometric simplex ∆q(�≥0) is a compact manifold with corners.

Now consider a unipotent Lie group G, a manifold X, and a G-torsor
π : Z → X.

Let U be a manifold with corners, and let g : U → X be a map of
manifolds. By a U-section of the torsor Z we mean a map of manifolds
σ : U → Z such that π ◦ σ � g.

In fancier words, σ : U → Z is a map of manifolds over X, i.e.

σ ∈ Z(U) � HomMfld/X(U,Z).

The commutative diagram and the picture on slides 34 and 35 apply.

The construction of the weighed average wavG,w(z) from Section 5 can
be geometrized. Namely, all the absolute constructions, including the
exponential maps, can be made relative to the base manifold X.

Amnon Yekutieli (BGU) Sheaves of DG Rings 40 / 49



7. Geometric Averaging

We obtain a function

(7.1) wavG : Z(U)q+1 → Z
(
∆

q(�≥0) × U
)
,

which again we call the weighted average.

To be concrete, an element of the set Z(U)q+1 is a sequence of U-sections

σ0 , . . . , σq : U → Z

of the torsor π : Z → X.

The weighed average is a map of manifolds (with corners)

σ :� wavG(σ0 , . . . , σq) : ∆q(�≥0) × U → Z.

The map σ interpolates between σ0 , . . . , σq, in the following sense:

Take the i-th vertex vi ∈ ∆
q(�≥0) and a point x ∈ U. Then

σ(vi , x) � σi(x) ∈ Z.
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7. Geometric Averaging

The weighed average wavG is functorial in G, X, Z and U.

It also respects the action of the permutation group on ∆q(�≥0).

Regarding simpliciality: as q varies, the two sets appearing in equation
(7.1) become simplicial sets, and wavG becomes a map of simplicial
sets.

If X � U consists of one point, then we recover the weighed average
from Section 5: for any z ∈ Zq+1 and w ∈ ∆q(�≥0) there is equality

wavG(w)(z) � wavG,w(z) ∈ Z.

See [Ye2] for details.

The operation wavG was required to construct simplicial sections of
torsors, which we explain in the next section.
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8. Simplicial Sections of Coordinate Bundles

8. Simplicial Sections of Coordinate Bundles

Here is the reason we needed the unipotent averaging process.

An important ingredient in deformation quantization of Poisson
manifolds (first used by Fedosov [Fe], and then by Kontsevich [Ko1]) is
the formal geometry of Gelfand-Kazhdan. See also [CFT].

This is a method for globalizing various constructions in differential
geometry. Crudely speaking, it enables global Taylor expansions of
functions and of sections of canonical bundles.

Here is a slight modification of this story (to make the exposition
easier).
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8. Simplicial Sections of Coordinate Bundles

One starts with a manifold X. There is an infinite dimensional bundle
π : Z → X, called the coordinate bundle of X.

A global section σ : X → Z is (i.e. can be suitably interpreted) as a
global Taylor expansion of the differentiable functions on X.

The existence of such a section σ implies (after a lot of preliminary
work) that every Poisson structure on X can be globally quantized
(uniquely up to gauge transformations).

Now the bundle Z is a torsor under a prounipotent Lie group G (an
inverse limit of unipotent Lie groups).

It follows that the fibers π−1(x) ⊆ Z are contractible manifolds.

A standard result in differential geometry says that a global
differentiable section σ : X → Z exists.
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8. Simplicial Sections of Coordinate Bundles

I was interested in algebraic manifolds, namely nonsingular algebraic
varieties over �.

For such a variety X there is a coordinate bundle π : Z → X, which is
an infinite dimensional variety, and it is a torsor under the same
prounipotent group G.

But in algebraic geometry it is very hard to find global sections of
bundles.

In particular, the coordinate bundle Z almost never has a global section.
(Even when X is an affine variety.)
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8. Simplicial Sections of Coordinate Bundles

The coordinate bundle Z does however admit sections on sufficiently
small affine open sets.

So we can choose a finite affine open covering U � {Ui}i∈I of X, and for
each i a section σi : Ui → Z|Ui of π : Z → X.

The functoriality of the unipotent averaging lets us average also over
prounipotent groups. Our bundle Z is a G-bundle, and G is
prounipotent.
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8. Simplicial Sections of Coordinate Bundles

In this way, for every finite sequence i � (i0 , . . . , iq) in I we obtain an
algebraic section

σi : ∆
q

�
×� (Ui0 ∩ · · · ∩ Uiq) → Z.

Here ∆
q

�
is the algebro-geometric q-dimensional simplex, i.e. a

q-dimensional linear variety with baricentric coordinates.

The sections i assemble into a simplicial section of Z.

This is sufficient to deduce the existence of a deformation quantization
in the algebraic setting.

For details see my papers [Ye1], [Ye3] and [Ye4].

- END -
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8. Simplicial Sections of Coordinate Bundles
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