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1. Background on Derived Intersection

1. Background on Derived Intersection

The starting point of this story is Serre’s local intersection multiplicity

formula.

Let K be a field, and let X be a smooth K-scheme.

Consider irreducible closed subschemes Y1, Y2 ⊆ X .

Let us assume that their intersection Z := Y1 ∩ Y2 has the expected

dimension; this is called a proper intersection.

Take the generic point z of one of the irreducible components of Z .

The local intersection multiplicity of Y1 and Y2 at z is the number

(1.1) int(Y1, Y2; z) :=
∑

i≥0

(−1)i · lengthOX,z

(
Tor

OX,z

i (OY1,z,OY2,z)
)
.
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1. Background on Derived Intersection

We can approach formula (1.1) from another direction.

Consider the object

(1.2) B = OY1 ⊗
L
OX

OY2

in D(ModOX ), the derived category of OX -modules.

Because

H−i(B) = TorOX
i (OY1 ,OY2)

as coherent OX -modules,

we can express the local intersection multiplicity as follows:

int(Y1, Y2; z) =
∑

i≥0

(−1)i · lengthOX,z
H−i(B)z.
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1. Background on Derived Intersection

Some time around 1990, a few mathematicians (including Deligne, Drinfeld

and Kontsevich) had the idea that the complex of OX -modules B from

formula (1.2) should be upgraded, and given a ring structure.

The pair (X ,B) should be viewed as a DG scheme, and it should be the

derived intersection of Y1 and Y2:

(1.3) Y1 ×
R
X Y2 = (X ,B).

Here “DG” is short for “differential graded”.

This was made precise in the paper [CK] of Ciocan-Fontanine and Kapranov

from 2001, that dealt with quasi-projective schemes X over a field K of

characteristic 0.
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1. Background on Derived Intersection

Later there appeared much more sophisticated (and difficult to comprehend)

treatments of derived intersection, as part of the emerging discipline of

derived algebraic geometry.

In derived algebraic geometry the theme is to replace ringed spaces with

certain objects (e.g. derived schemes) that live in complicated homotopical

settings. This makes the objects hard to understand and to manipulate

geometrically.

See the preprint [Be] of Behrend for one approach, and a survey of the

approaches of Toën et al. and of Lurie under “derived stack” in [nLab].

In this talk I will explain a simplified sort of derived algebraic geometry,

with temporary name flexible DG schemes. It is a variation of the

construction of [CK], and is still work in progress.
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1. Background on Derived Intersection

Here are some advantages of the theory of flexible DG schemes.

◮ The geometric intuition is retained – a flexible DG scheme (X ,A) is a
sheaf of DG rings A on a scheme X .

◮ The methods are pretty elementary: not much beyond algebraic

geometry and derived categories.

◮ The theory applies to schemes over an arbitrary base ring K (including

K = Z), to other ringed spaces (like complex manifolds), and should

even work on many ringed sites (like the étale site of a scheme).

◮ It is easy to present the derived intersection of closed subschemes Y1, Y2
of a scheme X as a flexible DG scheme.

◮ We expect to be able to define rigid dualizing complexes over flexible

DG schemes, and to prove their uniqueness and existence.

◮ This theory should make it possible to geometrize the recent derived

completion of DG rings of Shaul [Sh].
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2. Commutative DG Rings

2. Commutative DG Rings

Let us fix some nonzero commutative base ring K (e.g. a field or Z). All rings

are going to be central over K.

A DG ring is a graded ring

A =
⊕

p∈Z

Ap,

with a differential d : A → A of degree +1 that satisfies d ◦ d = 0 and

d(a · b) = d(a) · b + (−1)p · a · d(b)

for all a ∈ Ap and b ∈ Aq.

A homomorphism of DG rings φ : A → B must respect degrees and

differentials.
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2. Commutative DG Rings

We say that A is nonpositive if Ap = 0 for all p > 0.

The DG ring A is called strongly commutative if

(2.1) b · a = (−1)p · q · a · b

for all a ∈ Ap and b ∈ Aq, and

(2.2) a · a = 0

if p is odd.

Definition 2.3. A DG ring A is called commutative if it is both nonpositive

and strongly commutative.

Commutative rings are viewed as commutative DG rings concentrated in

degree 0.
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2. Commutative DG Rings

Example 2.4. Let A be a commutative ring, and let a ∈ A be an element.

Consider the Koszul complex B := K(A; a).

It is a free graded A-module

B = B−1 ⊕ B0 = (A · t)⊕ A,

where t is a variable of degree −1.

The graded module B is made into a commutative DG ring by defining

t · t := 0 and d(t) := a ∈ B0.

The inclusion A → B is a DG ring homomorphism.

Note that de Rham complexes are excluded, because they are not

nonpositive.
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3. Semi-Free DG Rings

3. Semi-Free DG Rings

From here on we assume all graded rings and DG rings are commutative, in

the sense of Definition 2.3.

The category of DG rings is denoted by DGRng/K.

Suppose we fix some A ∈ DGRng/K. A DG ring over A is a DG ring B,

equipped with a homomorphism φ : A → B. These form the category

DGRng/A.
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3. Semi-Free DG Rings

A nonpositive graded set is a set I with a decomposition I =
∐

p≤0 Ip.

For each index i ∈ Ip we take a variable ti of degree p.

The free graded ring K[I ] is the graded ring generated over K by the

variables {ti}i∈I , subject to the strong commutativity relations (2.1) and (2.2).

Given a DG ring A, we can forget the differential. The resulting graded ring

is A♮.

Definition 3.1. Let A be a DG ring.

A semi-free DG A-ring is a DG A-ring B, such that there is an isomorphism of

graded A♮-rings

B♮ ∼= A♮ ⊗K K[I ]

for some nonpositive graded set I .
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3. Semi-Free DG Rings

A homomorphism φ : A → B in DGRng/K is called a quasi-isomorphism if

H(φ) : H(A) → H(B)

is an isomorphism of graded rings.

Definition 3.2. Let B be a DG A-ring.

A semi-free resolution of B over A is a quasi-isomorphism B̃ → B in

DGRng/A, where B̃ is semi-free over A.

Every B ∈ DGRng/A admits a semi-free resolution B̃ → B.

Usually the indexing set I of the resolution B̃ is infinite.
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3. Semi-Free DG Rings

But sometimes there is a finite semi-free resolution:

Example 3.3. Take A := Z and B := Z/(6).

Let B̃ := K(A; a), the Koszul complex of the element a := 6. See Example 2.4.

Then B̃ → B is a semi-free resolution in DGRng/A.

There is one index only, in degree −1.
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4. DG Ringed Spaces

4. DG Ringed Spaces

Definition 4.1. A DG ringed space is a pair (X ,A), consisting of a
topological space X and a sheaf of DG K-rings

A =
⊕

p≤0

Ap

on X .

We shall only consider commutative DG ringed spaces, i.e. A is a sheaf of

commutative DG K-rings.
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4. DG Ringed Spaces

Definition 4.2. If (Y ,B) is another DG ringed space, then a map of DG

ringed spaces

f : (Y ,B) → (X ,A)

is a map of topological spaces f : Y → X , with a DG ring homomorphism

f ∗ : f −1(A) → B

on Y .

The category of DG A-modules on X is denoted by DGModA. It has a

derived category D(DGModA).

Every DG A-moduleM admits K-flat resolutions P → M and K-injective

resolutions M → I (under mild finiteness conditions on X ).

Hence the standard triangulated derived functors exist.

These include the functors Rf∗ and Lf ∗ associated to a map of DG ringed

spaces f .
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5. The Derived Category of Sheaves DG Rings

5. The Derived Category of Sheaves DG Rings

Let (X ,A) be a DG ringed space.

A DG A-ring is a sheaf of DG rings B on X equipped with a DG ring

homomorphism A → B.

Of course (X ,B) in itself is a DG ringed space.

The DG A-rings form the category DGRng/A.

A homomorphism φ : B → C in DGRng/A is called a quasi-isomorphism if

H(φ) : H(B) → H(C)

is an isomorphism of sheaves of graded rings.

Amnon Yekutieli (BGU) Sheaves of DG Rings 16 / 50



5. The Derived Category of Sheaves DG Rings

We can now define the notion appearing in the title of the talk:

Definition 5.1. The derived category of DGRng/A is the category

D(DGRng/A) gotten by formally inverting the quasi-isomorphisms.

There is a functor

(5.2) Q : DGRng/A → D(DGRng/A)

that we call categorical localization, which is the identity on objects.

We want to understand the functor (5.2).
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5. The Derived Category of Sheaves DG Rings

Before going further, let us mention that categorical localization commutes

with geometric localization.

Namely, if U ⊆ X is a subset, then there is a restriction functor

RestU/X : DGRng/A → DGRng/A|U , B 
→ B|U .

It is exact, and sits in this commutative diagram:

(5.3) DGRng/A
Q

��

RestU/X

��

D(DGRng/A)

RestU/X

��

DGRng/A|U
Q

�� D(DGRng/A|U )
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6. Semi-Pseudo-Free Resolutions

6. Semi-Pseudo-Free Resolutions

We have a topological space X . The constant sheaf on X with values in K is

KX .

Definition 6.1. Let U ⊆ X be an open set, with inclusion morphism

g : U → X .

The extension by zero sheaf

T := g!(KU )

is called the pseudo-free KX -module with pseudo-rank 1 and pseudo-support

U .
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6. Semi-Pseudo-Free Resolutions

Note that there is a section

(6.2) t ∈ Γ(U , T )

that we call the pseudo-basis of T .

Also note that the sheaf T is a flat KX -module, and its stalk at a point x ∈ X

is

Tx =

{

K · t ∼= K if x ∈ U

0 otherwise
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6. Semi-Pseudo-Free Resolutions

Let (X ,OX ) be a ringed space, and let T be a pseudo-free KX -module.

The OX -module

L := OX ⊗KX
T

is called the pseudo-free OX -module induced from T .

Note that

L ∼= g!(OU )

in the notation of Definition 6.1.

In [RD], pseudo-free OX -modules were used for several purposes, among

them to create flat resolutions.

In [KS2] these were called “almost free OX -modules”.

Warning: Suppose (X ,OX ) is a scheme, and L is a pseudo-free OX -module.

Usually L is not quasi-coherent.
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6. Semi-Pseudo-Free Resolutions

Recall (from Section 3) that a free graded K-ring K[I ] has a basis {ti}i∈I ,
which is a collection of graded variables, indexed nonpositive graded set I .

Our first main idea is to replace the collection of variables {ti}i∈I with a

collection {Ti}i∈I of pseudo-free KX -modules, also indexed by a nonpositive

graded set I .

Each pseudo-free KX -module Ti has its own pseudo-support Ui, and its

pseudo-basis

ti ∈ Γ(Ui, Ti).

The noncommutative pseudo-free KX -ring KX 〈I〉 is the direct sum of the

“monomials”

Ti1 ⊗KX
· · ·⊗KX

Tin , (i1, . . . , in) ∈ I × · · · × I
︸ ︷︷ ︸

n

,

with the obvious multiplication.

Amnon Yekutieli (BGU) Sheaves of DG Rings 22 / 50

6. Semi-Pseudo-Free Resolutions

Definition 6.3. Let {Ti}i∈I be a collection of pseudo-free KX -modules.

The commutative pseudo-free graded KX -ring KX [I ] is the quotient of KX 〈I〉
modulo the commutativity relations (2.1) and (2.2).

The local structure of the sheaf of rings KX [I ] is very nice:

At each point x ∈ X , the stalk KX [I ]x is the commutative free graded K-ring

K[Ix ], with indexing set

Ix := {i ∈ I | x ∈ Ui} ⊆ I

and basis {ti}i∈Ix .
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6. Semi-Pseudo-Free Resolutions

Definition 6.4. Let (X ,A) be a DG ringed space.

A semi-pseudo-free DG A-ring is a DG A-ring B, such that there is a graded

A♮-ring isomorphism

B♮ ∼= A♮ ⊗KX
KX [I ]

for some collection {Ti}i∈I of pseudo-free KX -modules.

This implies that B is K-flat as a DG A-module.

Definition 6.5. Let B ∈ DGRng/A.

A semi-pseudo-free resolution of B is a quasi-isomorphism B̃ → B in

DGRng/A, from some semi-pseudo-free DG A-ring B̃.

Theorem 6.6. [Ye3] Every B ∈ DGRng/A admits some semi-pseudo-free

resolution.
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6. Semi-Pseudo-Free Resolutions

Theorem 6.7. [Ye3] Suppose φ0 : B̃0 → B and φ1 : B̃1 → B are

quasi-isomorphisms in DGRng/A.

Then there is a semi-pseudo-free DG ring B̃, and quasi-isomorphisms

ψ0 : B̃ → B̃0 and ψ1 : B̃ → B̃1, such that

φ0 ◦ ψ0 = φ1 ◦ ψ1.

(6.8) B̃
ψ0

��

ψ1

��

B̃0

φ0 ��

B̃1

φ1��

B
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6. Semi-Pseudo-Free Resolutions

Remark 6.9. In [CK] the authors only considered quasi-coherent DG

OX -rings on a scheme (X ,OX ).

Namely DG rings A ∈ DGRng/OX such that each Ai is a quasi-coherent

OX -module.

The resolutions in [CK] were by quasi-coherent semi-free DG rings. These are

like in our Definition 6.4, except that instead of the pseudo-free OX -modules

OX ⊗KX
Ti that we use, they had rank 1 locally free OX -modules Li (i.e. line

bundles).

Existence of resolutions (like our Theorem 6.6) was proved only for a

quasi-projective scheme X over a field K.

Some examples of quasi-coherent semi-free resolutions are worked out in

the Appendix (Section 10).
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6. Semi-Pseudo-Free Resolutions

Remark 6.10. As far as I can tell, a single semi-pseudo-free DG ring B̃
cannot, in general, lift an infinite collection of quasi-isomorphisms {φi}, as
in diagram (6.8).

The reason – deep down in the details – is that an infinite intersection of

open sets is not open.

There is an analogous finiteness in the quasi-coherent semi-free resolutions

of [CK], when X is a quasi-projective scheme. In this setup finiteness shows

up in the poles of sections of the line bundles Li.

This sort of behavior is typical in algebraic geometry. It resembles the fact

that a single open covering of a scheme X does not trivialize all line bundles

on X .

Remark 6.11. What the last remark seems to imply is that the

semi-pseudo-free DG rings are not cofibrant objects, in the sense of Quillen.

Thus it is plausible that there is no Quillen model structure on DGRng/A.
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7. The Quasi-Homotopy Relation

7. The Quasi-Homotopy Relation

Recall our setup: (X ,A) is a commutative DG ringed space over K.

Definition 7.1. Suppose

φ0,φ1 : B → C

are homomorphisms in DGRng/A.

A homotopy from φ0 to φ1 is a commutative diagram

B B ⊗A B
id⊗ id

��
φ0 ⊗φ1

��

η

��

C

Bcyl

ψ

��

φ

		

in DGRng/A, in which ψ is a quasi-isomorphism.
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7. The Quasi-Homotopy Relation

The definition above is borrowed from the theory of Quillen model

structures, where it is called a “left homotopy”, and Bcyl is called a “cylinder

object”.

Here is the second main innovation in this talk.

Definition 7.2. Suppose φ0,φ1 : B → C are homomorphisms in DGRng/A.

A quasi-homotopy from φ0 to φ1 is:

◮ a quasi-isomorphism ψ : B̃ → B,

◮ and a homotopy from φ0 ◦ ψ to φ1 ◦ ψ.

B̃
ψ

��

φ0 ◦ψ





φ1 ◦ψ

��
B

��




C
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7. The Quasi-Homotopy Relation

Theorem 7.3. [Ye3] The relation of quasi-homotopy is a congruence on the

category DGRng/A.

This means that the next definition is possible.

Definition 7.4. The homotopy category of DGRng/A is the category

K(DGRng/A), that has the same objects as DGRng/A, and its morphisms

are the quasi-homotopy classes of DG ring homomorphisms.

There is a functor

(7.5) P : DGRng/A → K(DGRng/A)

that is the identity on objects and surjective on morphisms.
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7. The Quasi-Homotopy Relation

It is quite easy to see that if φ0,φ1 : B → C are quasi-homotopic morphisms

in DGRng/A, then Q(φ0) = Q(φ1) in D(DGRng/A).

This implies that there is a functor Q̄ that fits into this commutative diagram:

(7.6) DGRng/A
P ��

Q

��

K(DGRng/A)
Q̄

�� D(DGRng/A)

Theorem 7.7. [Ye3] The functor Q̄ is a faithful right Ore localization.

Therefore every morphism ψ : B → C in D(DGRng/A) is a simple right

fraction:

ψ = Q(φ0) ◦Q(φ1)
−1,

where φi are homomorphisms in DGRng/A and φ1 is a quasi-isomorphism.
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8. Derived Tensor Products

8. Derived Tensor Products

We are still in the general geometric setup: (X ,A) is a commutative DG

ringed space over K.

The tensor product is a functor

(−⊗A −) : (DGRng/A)× (DGRng/A) → DGRng/A.

It turns out to have a left derived functor with respect to

quasi-isomorphisms:
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8. Derived Tensor Products

Theorem 8.1. [Ye3] There is a functor

(−⊗L
A −) : D(DGRng/A)× D(DGRng/A) → D(DGRng/A) ,

together with a morphism of functors

ηL : (−⊗L
A −) → (−⊗A −).

The functor (−⊗L
A
−) is determined by this property:

If B, C ∈ DGRng/A are such that at least one of them is K-flat, then the

morphism

ηLB,C : B ⊗L
A C → B ⊗A C

in D(DGRng/A) is an isomorphism.
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8. Derived Tensor Products

See [Ye4, Subsection 8.3] regarding nonadditive derived functors.

The proof of Theorem 8.1 uses some facts about pseudo-semi-free

resolutions.

Here are two good properties of the functor (−⊗L
A
−) :

◮ It commutes with the forgetful functor

D(DGRng/A) → D(ModA).

◮ It commutes with geometric localization to a subset U ⊆ X ; see

diagram (5.3).
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9. Flexible DG Schemes

9. Flexible DG Schemes

We need a geometric version of quasi-isomorphism.

Definition 9.1. A map of DG ringed spaces

f : (Y ,B) → (X ,A)

is called a quasi-isomorphism if f : Y → X is a homeomorphism, and

H(f ∗) : H(f −1(A)) → H(B)

is an isomorphism of graded KY -rings.
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9. Flexible DG Schemes

Given a DG ring A, its 0-th cohomology H0(A) is a ring. Consider the affine

scheme X := Spec(H0(A)).

As explained in [Ye5, Section 4], there is a canonical way to sheafify A on X .

The resulting DG ringed space (X ,A) is denoted by DGSpec(A).

Here are a few tentative definitions.

Definition 9.2. A flexible DG scheme is a DG ringed space (X ,A) with the

following two properties:

(i) The ringed space (X ,H0(A)) is a scheme.

(ii) Every point x ∈ X has an open neighborhood U such that the DG

ringed space (U ,A|U ) is quasi-isomorphic to DGSpec(A), for some DG

ring A.
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9. Flexible DG Schemes

Definition 9.3. A map of flexible DG schemes

f : (Y ,B) → (X ,A)

is a map of DG ringed spaces such that:

◮ H0(f ) : (Y ,H0(B)) → (X ,H0(A))

is a map of schemes.

◮ Locally, in terms of property (ii), f is represented by a homomorphism

A → B of DG rings.

The resulting category is denoted by DGSch/K.

By inverting the quasi-isomorphisms in DGSch/K we obtain the derived

category of flexible DG schemes, with notation D(DGSch/K).
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9. Flexible DG Schemes

We can finally say what is derived intersection in the context of flexible DG

schemes.

Recall the derived tensor product of sheaves of DG rings from Theorem 8.1.

Definition 9.4. Let Y1 and Y2 be closed subschemes of a scheme X .

Their derived intersection is the flexible DG scheme

(9.5) Y1 ×
R
X Y2 := (Z , C),

where the topological space is

(9.6) Z := Y1 ∩ Y1 ⊆ X ,

and the sheaf of DG rings is

(9.7) C := (OY1 ⊗
L
OX

OY2)|Z ∈ D(DGRng/OX ).
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9. Flexible DG Schemes

Note that

H0(C) = (OY1 ⊗OX
OY2)|Z ,

so (Z ,H0(C)) is indeed a scheme.

As far as we can tell, the pair (Z , C) is a well-defined object of D(DGSch/K).

There are a few concrete examples of derived intersections in the Appendix

(Section 11).

∼ END ∼
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10. Appendix: Examples of Quasi-Coherent Semi-Free Resolutions

10. Appendix: Examples of Quasi-Coherent Semi-Free Resolutions

Let X be a scheme over a field K.

Recall from Remark 6.9 that A ∈ DGRng/OX is called quasi-coherent if

every Ai is a quasi-coherent OX -module.

If Y ⊆ X is a closed subscheme, then OY is a quasi-coherent DG OX -ring.

Sometimes closed subschemes have quasi-coherent semi-free resolutions.

Here are some examples.
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10. Appendix: Examples of Quasi-Coherent Semi-Free Resolutions

Example 10.1. Suppose X is an affine scheme and Y ⊆ X is a closed

subscheme.

Let A := Γ(X ,OX ) and B := Γ(X ,OY ).

So A → B is a surjective ring homomorphism.

We choose a semi-free resolution φ : B̃ → B in DGRng/A, as in Definition

3.2.

Passing to quasi-coherent sheaves on X we obtain a quasi-coherent

semi-free resolution φ : B̃ → OY in DGRng/OX .
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10. Appendix: Examples of Quasi-Coherent Semi-Free Resolutions

Example 10.2. Now take X = Pn
K
, the n-dimensional projective space.

Let Y ⊆ X be a hypersurface defined by a homogeneous polynomial f of

degree d.

There is an exact sequence of coherent sheaves

0 → OX (−d)
f
−→ OX → OY → 0.

This can be viewed as a “projective Koszul complex”.

Define the graded sheaf

B̃ = B̃−1 ⊕ B̃0 :=
(
OX (−d) · s

)
⊕ OX ,

where s is a variable of degree −1.

We make B̃ into a DG OX -ring by s2 := 0 and d(s) := f .

Then B̃ → OY is a quasi-coherent semi-free resolution in DGRng/OX .
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11. Appendix: Examples of Derived Intersection

11. Appendix: Examples of Derived Intersection

In this last section there are a few examples of derived intersection – all in

the quasi-coherent framework, as in [CK].

Example 11.1. Consider the affine plane

X := A2
K
= Spec(A)

where A := K[t1, t2] is the polynomial ring over a field K.

We look at the curves Yi ⊆ X defined by the equations fi(t1, t2) = 0, where

f1(t1, t2) := t2 and f2(t1, t2) := t2 − t21 .

So Yi = Spec(Bi), where Bi := A/(fi).
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(cont.) Here is the picture:

The set-theoretic intersection of the curves Y1 and Y2 is of course

Y1 ∩ Y2 = Z = {z},

where z is the origin.
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(cont.) This intersection is proper: it has the correct dimension, which is 0.

But the intersection is not transversal, and this is recorded by the

multiplicity, which is 2.

In terms of schemes, the intersection is (Z ,OZ), where OZ is the

sheafification of the ring

(11.2) C′ := A/(f1, f2) ∼= K[ǫ], ǫ2 = 0.

Let’s calculate the derived intersection

Y1 ×
R
X Y2 = (Z , C).

We start on the ring level.
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(cont.) Take the semi-free resolution B̃1 → B1 in DGRng/A to be the Koszul

complex

B̃1 := K(A; f1) =
(
A

f1
−→ A

)
.

Passing to sheaves, this gives us a quasi-coherent semi-free resolution

(11.3) B̃1 → OY1

in DGRng/OX .

Let

C := B̃1 ⊗A B2 =
(
A

f1
−→ A

)
⊗A B2 =

(
B2

f1
−→ B2

)
.

So there is a quasi-isomorphism DGRng/A :

(11.4) C = B̃1 ⊗A B2 → C′,

where C′ is from (11.2).
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(cont.) Sheafifying (11.4), we see that there is a quasi-isomorphism

C = B̃1 ⊗OX
OY2 → OZ

in DGRng/OX .

We see that in this case the derived intersection (Z , C) is isomorphic, in the

derived category D(DGRSch/K), to the usual intersection (Z ,OZ).
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Example 11.5. Let us calculate the derived self-intersection of Y1 :

Y1 ×
R
X Y1 = (Y1,D).

We can use the resolution (11.3) from the previous example.

But now

D := B̃1 ⊗A B1 =
(
A

f1
−→ A

)
⊗A B1 =

(
B1

f1
−→ B1

)
=

(
B1

0
−→ B1

)
.

Thus

D = D−1 ⊕ D0 ∼= B1[s] = (B1 · s)⊕ B1,

where s is a variable of degree −1, and we define s2 = 0, and d(s) = 0.

In sheaves we have D = OY1 [s].

We see that derived intersection, like classical intersection, is not

deformation invariant.
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Example 11.6. Here we replace the affine picture by its projective closure.

So X = P2
K
, and Y1, Y2 ⊆ X are the closures of the curves from Example 11.1.
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(cont.) Thus Yi ⊆ X is the projective curve defined by the homogeneous

equation fi(t0, t1, t2) = 0, where

f1(t0, t1, t2) := t2 and f2(t0, t1, t2) := t0 · t2 − t21 .

We can use Example 10.2 to cook up a quasi-coherent semi-free resolution of

OY1 .

I leave it as an exercise to prove:

1. The derived intersection Y1 ×
R
X Y2 in the projective case is (Z ,OZ),

where OZ is the OX -ring of length 2 from Example 11.1.

2. The derived self-intersection Y1 ×
R
X Y1 in the projective case is (Y1,D),

where D = OY1 [s], s has degree −1, s2 = 0, and d(s) = 0.

It is instructive to use the open embedding A2
K
⊆ P2

K
to compare these

calculations to Examples 11.1 and 11.5.

For a deeper discussion of derived self-intersection see the paper [AC].
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