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A ring with an Auslander dualizing complex is a generalization of an Auslan-
der—Gorenstein ring. We show that many results which hold for Auslander—Gor-
enstein rings also hold in the more general setting. On the other hand we give
criteria for existence of Auslander dualizing complexes which show these occur
quite frequently. The most powerful tool we use is the Local Duality Theorem for
connected graded algebras over a field. Filtrations alow the transfer of results to
nongraded algebras. We also prove some results of a categorical nature, most
notably the functoriality of rigid dualizing complexes.  © 1999 Academic Press
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0. INTRODUCTION

Dualizing complexes play an essential role in the Serre-—Grothendieck
Duality Theory on schemes (see [RD]). The duality formalism was general -
ized to noncommutative rings by the first author, in order to answer some
guestions which arose in this context, mainly regarding local duality for
noncommutative graded algebras (see [Yel]). A version of Serre duality for
noncommutative projective schemes was established using dualizing com-
plexes (see Jargensen [Jo2] and our [Y Z1]). Dualizing complexes, and more
generally derived categories, are powerful tools for proving abstract prop-
erties of noncommutative rings. For examples, consider the noncommuta-
tive graded versions of the Auslander—Buchsbaum Theorem, The Bass
Theorem, and the No-Holes Theorem for Bass numbers (see [Jol, Theo-
rems 3.2, 4.5, 4.6, and 4.8]). Under the synonym ‘‘cotilting complexes,”’
dualizing complexes were studied by Miyachi [Mi2]. Cotilting bimodules
occur often in papers on representations of finite-dimensional algebras, cf.
[Hal.

In this paper we will provide further evidence that the dualizing complex
(Definition 1.1) is an effective tool for studying noncommutative rings. We
are especially interested in those dualizing complexes which satisfy an
extra homological condition called the Auslander property (Definition 2.1).
The basic idea here is that if a statement holds for Auslander—Gorenstein
rings in the sense of [Bj], then an appropriate version of the statement
should hold for rings with Auslander duaizing complexes. The Gorenstein
condition, i.e., the ring itself having finite injective dimension, is consid-
ered to be very restrictive; in contrast, having an Auslander dualizing
complex is considered to be a mild condition.

There are a few ways to show existence of Auslander dualizing com-
plexes. For example, if A is a connected graded algebra (over a field k)
with enough normal elements, then A has an Auslander dualizing com-
plex. Recall that a connected graded k-algebra A has enough normal
elements if every graded prime factor A/p # k has a nonzero normal
element of positive degree. This class of rings has been studied recently by
many algebraists, because of developments in quantum groups and non-
commutative algebraic geometry.

In this paper we prove a diverse collection of results, whose common
thread is that their proofs are based on the existence of an Auslander
dualizing complex. Throughout & denotes a fixed base field, and a k-alge-
bra means an associative algebra with 1.

First we generalize [GL, Theorem 1.6] by dropping the Gorenstein
condition. Note that the hypothesis on gr A4 in the next theorem is easy to
check in practice (see Example 6.11), and we suspect it can even be
weakened.
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THEOREM 0.1.  Assume A is a normally separated filtered k-algebra such
that or A is a noetherian connected graded k-algebra with enough normal
elements. Then Spec A is catenary.

This is proved after Corollary 6.22.
We generalize some results in [ASZ], two of which are:

THEOREM 0.2. Assume A is a noetherian k-algebra with an Auslander
dualizing complex. Then there is a step duality between the category Mod; A
of finitely generated left A-modules and the category Mod; A° of finitely
generated right A-modules.

Actually we prove a more general result involving two algebras—see
Theorem 2.15. It follows that if the algebra A has an Auslander dualizing
complex then the left and right Krull dimensions of A are finite.

THEOREM 0.3. Let A be an Auslander—Gorenstein noetherian k-algebra.
Assume A has a filtration such that or A is an AS-Gorenstein noetherian
connected graded k-algebra (e.g., if A is connected graded). Then A has an
artinian self-injective ring of fractions.

For more details see Theorem 6.23.

The notion of characteristic variety Ch M of a module M was intro-
duced in 2-module theory (cf. [Co, p. 98]). The next theorem generalizes a
result of Gabber by dropping the Gorenstein condition. The possibility of
making this generalization was suggested by Van den Bergh.

THEOREM 0.4 (Purity of Characteristic Variety). Assume A is a filtered
k-algebra such that gr A is a commutative connected graded affine k-algebra.
If M is a finitely generated GKdim-pure left A-module, then the characteristic
variety Ch M is pure.

Given an algebra A there might exist non-isomorphic Auslander dualiz-
ing complexes over it (see Example 2.3(c)). For various reasons (like
functoriality) it is desirable to find dualizing complexes which are canoni-
cal in some sense. In the graded case, the balanced dualizing complex
(Definition 4.2), introduced by the first author in [Yel], isa natural choice.
In the upgraded case, one should consider the rigid dualizing complex
(Definition 3.1) introduced by Van den Bergh [VdB]. Rigid dualizing
complexes (and balanced dualizing complexes in the graded case) are
uniquely determined up to a unique isomorphism. A balanced dualizing
complex is aways rigid (see [VdB, Proposition 8.2(2)] and our Corollary
6.7). The next theorem on the functoriality of rigid dualizing complexesisa
combination of Theorem 3.2 and Corollary 3.4. A homomorphism 4 — B
of algebras is called finite if B is a finitely generated left and right
A-module.
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THEOREM 0.5. Let A be a noetherian k-algebra. A rigid dualizing complex
R, over A is unique up to a unique isomorphism. If A — B is a finite
homomorphism and R ,, Ry are rigid dualizing complexes over A, B, respec-
tively, then there is at most one morphism Tty , ,: Ry = R, compatible with
the rigidity.

The existence of a dualizing complex is not automatic. A very effective
criterion for existence of balanced complexes is given in [VdB, Theorem
6.3] (which is Theorem 4.6 here). Van den Bergh's idea was to first prove
the Local Duality Theorem, and then to show this duality is represented by
a balanced dualizing complex. The Rees algebra allows us to transfer
results on graded algebras to non-graded algebras (see Theorem 6.2).

We prove that Auslander rigid dualizing complexes exist for a large class
of rings. First, the similar submodule condition on graded 4-modules (see
Definition 5.12) enables induction on GKdim. Combining Theorems 5.13
and 5.14 we get:

THEOREM 0.6. Assume A is a noetherian connected graded k-algebra
which has a balanced dualizing complex R and satisfies the similar submodule
condition (e.g., A is FBN or has enough normal elements). Then the balanced
dualizing complex R is graded Auslander.

Next, Theorem 6.2 says.

THEOREM 0.7. Suppose A is a filtered k-algebra such that the associated
graded algebra gr A is noetherian. If or A has a graded Auslander balanced
dualizing complex, then A has an Auslander rigid dualizing complex.

By results of Grothendieck, a commutative affine connected graded
k-algebra has a graded Auslander balanced dualizing complex (this also
follows from Theorem 0.6). Since factor rings of universal enveloping
algebras of finite dimensional Lie algebras are filtered, and their associ-
ated graded algebras are commutative, Theorem 0.7 tells us that these
algebras have Auslander rigid dualizing complexes. In the same way we
may use Theorems 0.7 and 0.6 to show that many quantum algebras and
their factor algebras have Auslander rigid dualizing complexes. A key step
in the proof of Theorem 0.7 is the following theorem (see Theorem 5.1 for
full details and proof).

THEOREM 0.8. Let A be a noetherian connected graded k-algebra. Sup-
pose t € A is a nonzero homogeneous normal element of positive degree. Then
A has a graded Auslander balanced dualizing complex if and only if so does
A/(1).

As noted on [Zh, p. 399], the proof of [SZ, Lemma 6.1(ii)] has a gap, and
an alternative proof of the result (under extra hypotheses) is given in [Zh,
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Theorem 3.1]. We now give a complete proof of [SZ, Lemma 6.1(ii)] using
Auslander dualizing complexes (the proof is at the end of Section 5).

ProrosiTION 0.9.  Let A be a noetherian locally finite N-graded k-algebra.
If A is graded FBN, or A has enough normal elements, then GKdim
M = Kdim M € N for every finitely generated left or right graded A-module
M.

Here are some other results we prove:

(1) Gabber's Maximality Principle (Theorem 2.19).
(2) Existence of double-Ext spectral sequence (Proposition 1.7).

(3) The existence of an Auslander rigid dualizing complex is trans-
ferred to related algebras (Propositions 4.18 and 4.20, Corollaries 4.17,
5.10, and 5.11).

The canonical dimension, denoted by Cdim, is defined when 4 has an
Auslander dualizing complex (Definition 2.9). It is an exact finitely parti-
tive dimension function (Theorem 2.10). Local duality implies that the
canonical dimension is symmetric in the graded case (Proposition 4.13).
Therefore if A is a connected graded algebra with an Auslander balanced
dualizing complex, the canonical dimension Cdim is exact, finitely parti-
tive, and symmetric on graded modules. Note that the Krull dimension,
denoted by Kdim, is exact and finitely partitive, but it is unknown whether
it is symmetric. On the other hand the Gelfand-Kirillov dimension,
denoted by GKdim, is symmetric, but neither exact nor finitely partitive in
general. Hence the canonical dimension is the better dimension function
—at least in the graded or filtered case.

The study of dualizing complexes over noncommutative rings presents
many interesting and subtle questions. We conclude the introduction by
mentioning two of them:

QuEsTION 0.10. Which (noetherian, affine) k-algebras have (rigid) dual-
izing complexes?

QuEesTioN 0.11.  Is a rigid dualizing complex always Auslander?

1. DUALIZING COMPLEXES

Let k£ be a field and let 4 be an associative k-algebra with 1. All
A-modules will be by default left modules, and we denote by Mod A the
category of left 4-modules. Let A4A° be the opposite algebra, and let
A*=A4® A where ® = ® . Thus an A°-module M is, in the conven-
tional notation, an A-A4-bimodule ,M, central over k. Most of our
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definitions and results have a left-right symmetry, expressible by the
exchange of 4 < A°. Since these symmetries are evident we shall usually
not mention them.

Let D(Mod A) be the derived category of A-modules, and let

D*(Mod A4), for * =b, +, —, or blank, be the full subcategories of
bounded, bounded below, bounded above, or unbounded complexes, re-
spectively [RD].

Given another k-algebra B, the forgetful functor Mod(A4 ® B°) —
Mod A is exact, and so induces a functor D*(Mod(A4 ® B°)) —
D*(Mod 4). Now A4 ® B° is a projective A-module, so any projective
(resp. flat, injective) (A4 ® B°)-module is projective (resp. flat, injective)
over A.

Consider k-algebras A4, B, C. For complexes M € D(Mod(A4 ® B°)) and
N € D(Mod(A4 ® C°)), with either M € D~ or N € D*, there isa derived
functor

RHom,(M,N) € D(Mod(B ® C°)).

It is calculated by replacing M with an isomorphic complex in D~(Mod(.A
®B°)) which consists of projective modules over A, or by replacing N
with an isomorphic complex in D*(Mod(A4 ® C°)) which consists of injec-
tive modules over A. For full details see [RD, Yel]. Note that for modules
M and N, viewed as complexes concentrated in degree O, one has

H? RHom (M, N) = Ext{(M,N),

the latter being the usual Ext.

Because the forgetful functors Mod(A4 ® B°) — Mod A, etc., commute
with RHom ,(—, —) there is no need to mention them explicitly.

A complex N € D"(Mod A) is said to have finite injective dimension if
thereisan integer ¢, with Ext4(M, N) = Ofor al ¢ > g, and M € Mod A.

For the rest of this section A denotes a left noetherian k-algebraand B
denotes a right noetherian k-algebra. (For instance we could take 4 = B a
two-sided noetherian algebra.) Observe that the algebra 4 ® B° need not
be left noetherian.

The subcategory Mod, A4 of finitely generated A-modules is abelian and
closed under extensions. Hence there is a full triangulated subcategory
D;(Mod A4) c D(Mod A4) consisting of al complexes with finitely gener-
ated cohomologies.

Dualizing complexes over commutative rings were introduced in [RD].
The noncommutative graded version first appeared in [Yel], and we now
give a dightly more general version.
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DeriniTioN 1.1. Assume A and B are k-algebras, with A left noethe-
rian and B right noetherian. A complex R € D?(Mod(A4 ® B°)) iscalled a
dualizing complex if it satisfies the three conditions below:

(i) R has finite injective dimension over 4 and B°.
(i) R has finitely generated cohomology modules over 4 and B°.

(iii) The canonica morphisms B — RHom (R, R) in D(Mod B¢),
and A - RHomg (R, R) in D(Mod A°¢), are both isomorphisms.

In case A = B, we shall say that R is a dualizing complex over A.

Condition (i) is equivaent to having an isomorphism R =1 €
D’(Mod A ® B°), where each I isinjective over A and over B°.

ExampPLE 1.2. Suppose A is commutative and R is a dualizing complex
in the sense of [RD]. If we consider R as a complex of bimodules, by
identifying 4 = A°, then R is a dualizing complex in the sense of the
definition above. According to [Ye3], if Spec A is connected, then any
dualizing complex R’ over A isisomorphic to R ®, P[n], where P is an
invertible bimodule (not necessarily central!) and n € Z.

Some easy examples of dualizing complexes over honcommutative rings
are given in Example 2.3.

The next proposition offers an explanation of the name ‘“dualizing
complex.”” The duality functors associated to R are the contravariant
functors

D:
DO

RHom,(—,R):D(Mod 4) — D(Mod B°)
RHomg-(—,R):D(Mod B°) — D(Mod A4).

PropPosITION 1.3. Let R € D(Mod(A ® B°)) be a dualizing complex.

(1) For any M € D,(Mod A) one has DM € D(Mod B°) and M =
D°DM.

(2) The functors D and D° determine a duality, i.e., an anti-equiv-
alence, of triangulated categories between D, (Mod A) and D (Mod B°),
restricting to a duality between D}(Mod A) and D}(Mod B°).

Proof. (1) This is dightly stronger than [Yel, Lemma 3.5]. By adjunc-
tion we get a functorial morphism M — D° DM. Since the functor D°D is
way out in both directions and D°DA = A by assumption, the claim
follows from the reversed forms of [RD, Propositions 1.7.1 and 1.7.3].

(2) This is immediate from part (1), together with the fact that
M € D’(Mod A) implies DM € € D(Mod B°). 1
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Remark 1.4. The noetherian hypothesis can be relaxes—dualizing com-
plexes can be defined over any coherent algebra A4 (see [Yel, Mil)). The
category of finitely generated 4-modules is then replaced by the category
of coherent modules. Many definitions and results in our paper hold for
coherent algebras, as can be easily checked.

Perhaps one can even work over an arbitrary algebra, using the category
of coherent complexes, as defined by Illusie (see [SGAB, Expose 1]).

Another direction to extend the theory isto alow k to be any commuta-
tive ring. In this case the derived category of bimodules should be
D(DGMod(A ®F B°)), where A & B° is a differential graded algebra.
See [Ye3, Remark 1.12].

Remark 1.5. Miyachi proved a converse to Proposition 1.3(2): if there
are contravariant triangle functors D(Mod A) — D(Mod B°) and
D(Mod B°) — D(Mod A4) which send @ to I1, preserve D?, and induce
duality on DJ’Z-, then there is a dualizing complex in D(Mod(A4 ® B°)) (see
[Mi2, Theorem 3.3)).

Remark 1.6. There are examples of algebras 4 and B where there isa
dualizing complex R € D(Mod(A ® B°)), but there is no dualizing com-
plex in D(Mod A°); cf. [WZ]. The algebras 4 and B are necessarily not
derived Morita equivalent, since given a tilting complex T € D(Mod(B ®
A°)), the complex R &% T € D(Mod A¢) would be duaizing (cf. [Ye3)).

There are Grothendieck spectral sequences for the isomorphism of
functors 1pymoa 4) = D°D and lpyea po) = DD°. For modules they take
this form:

ProrPosITION 1.7. Let R € D(Mod(A ® B°)) be a dualizing complex.
Then three are convergent double-Ext spectral sequences

Ep 9= Exth. (Ext;9(M,R),R) = M (18
forall M € Modf A, and
E§ 1= Exti(Extz¢(N,R),R) = N (1.9)

forall N € Mod, B°.

Proof. By symmetry it suffices to consider (1.8) only. We can assume R
is a bounded complex of bimodules with each R? an injective module over
A and B°. Given a nonzero finitely generated A4-module M, define the
complex

H = Homy. (Hom (M, R), R).

Then the adjunction homomorphism M — H is a quasi-isomorphism. Pick
a positive integer d large enough so that R? = 0 if |q| > d. Consider the
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decreasing filtration on H given by the subcomplexes
FPH := Homg. (Hom (M, R),R>").

Then F is an exhaustive filtration, and it determines the convergent
spectral sequence (1.8). 1

Given M < D*(Mod A), there is a quasi-isomorphism M — [ in
D*(Mod A), where each I7 isinjective and Ker(1¢ — [1*1) c 17 is essen-
tial. Such I is unique (up to a non-unique isomorphism), and it is called
the minimal injective resolution of M (cf. [Yel, Lemma 4.2]). If M has
finite injective dimension then I is bounded.

The next two results are straightforward generalizations of [ASZ, Lemma
2.2 and Theorem 2.3], so the proofs are omitted.

LEMMA 110. Let R € D(Mod(A ® B°)) be a dualizing complex, and let
I be the minimal injective resolution of R in D*(Mod A). Let Z, = Ker(I' —
I'*Y) and let M be a finitely generated left A-module. Then there exist
fisoo f, €HOM(M, Z)) such that for every N  N; Ker(f;) the natural
map Ext'(M,R) — Ext,(N, R) is zero; or equivalently, the natural map
Exty,(M/N, R) —» Ext'(M, R) is surjective.

THEOREM 111 Let R € D(Mod(A ® B°)) be a dualizing complex, let 1
be the minimal injective resolution of R in D*(Mod A), and let Z, = Ker(I'
— ['*1). Then:

(1) For every nonzero A-module M there is a nonzero submodule
N C M which embeds in some Z,.
(2) Every indecomposable injective A-module appears in 1.
We conclude this section with a discussion of dualizing complexes in

D(Mod(A ® B°)) when A is commutative. For a prime ideal p c A4 let
J,(p) be an injective hull of 4 /p. Let us recall a result of Grothendieck.

PropPosiTION 1.12 [RD, Proposition V.7.3]. Suppose A is a commutative
noetherian ring and R € Df’?(Mod A) is a (central) dualizing complex. Let I
be the minimal injective resolution of R in Mod A.

(1) There is a function d : Spec A — Z such that

"= @ J,u(p).
d(p)=q

(2 If p c q are primes and q/p CA/p has height 1, then d(p) =
d(q) — 1.
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The function d is called a codimension function in [RD]. In our case we
get:

THEOREM 1.13. Suppose A is a commutative noetherian k-algebra, B is a
right noetherian k-algebra, and R € D(Mod(A ® B°)) is a dualizing complex.
Let I be the minimal injective resolution R in Mod A. Then:

(1) There are functions d,r:Spec A — Z, with r > 1 and constant on
connected components of Spec A, s.t.

Iq = @ JA(p)r(D).
d(p)=q

(2 If pcq are primes of A and q/p C A/p has height 1, then
d(p) =d(q) — 1.
(3 A is catenary, and (if A # 0) its Krull dimension is

Kdim A < max{d(p)} — min{d(p)} < .

(4) B is an Azumaya A-algebra.
The proof of the theorem is after the next lemma.

LEMmMA 1.14.  Assume in addition that A is local. Then there is an integer
d such that Ext9(M, R) = 0 and Ext}.(N, R) = 0 for all q¢ # d, all finite
length A-modules M, and all finite length B°-modules N.

Proof. According to [Ye3, Proposition 5.4] (which works even when
A + B; cf. ibid. Proposition 2.5), left and right multiplications on R induce
ring isomorphisms A = Endpyoq(4s5°(R) = Z(B). Moreover since A4 is
noetherian and B° = Ext{(R, R) we see that B isafinite A-algebra. If N
isan A-central (A ® B°)-module, then Ext%-(N, R) isa central A-bimod-
ule.

Denote by K the residue field of A. Let p, = min{p|[Ext4(K, R) + O}
and p, = max{ p|[Ext;(K, R) # 0}. By induction on length we see that for
every finite length 4-module M, p, = min{p|Extj(M,R) # O} and p; =
max{ p|Ext45(M, R) + 0}.

Now take a nonzero finite length B°-module N. Since we can view N as
a central A-bimodule, it follows that Ext%.(N, R) is also a central A-bi-
module for every ¢; and so it has finite length. Define ¢, =
min{g|Ext%. (N, R) # 0} and g, == max{g|[Ext%.(N, R) # 0}. In the E,-page
of the spectral sequence of Proposition 1.7 we have nonzero terms E§v ~ 9o
= Extf(Exti (N, R)) and Ejo % = Extjo(Extf: (N, R)), that appear in
the right-top and left-bottom corners, respectively. The convergence of the
spectral sequence forces p, = q, and p, = q,. Thereforeweget d := p, =

Go=9q1=po 1
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Proof of Theorem 1.13. (1) As observed in the proof of the lemma, B is
a finite A-algebra. Take a prime p c A, and define B, = B ®, 4, and
R, =A,® R ® B, € D"(Mod(4, ® B))). We clalmthat R, is a dual-
|Z|ng complex

First note that the cohomologies H?R are central A-bimodules. Since
A—->A, is fla and 4, ® A, =A,, there are isomorphisms HR,
=A,® H'R=HR & B,. Therefore R, =A4,® R=R & B, in
D’(Mod(A4 ® B°)). It is easy to see that the cohomology bimodules HYR
are finitely generated on both sides, RHom, (R,,R,) =B, and
RHom (R, R)) =

In order to venfy that R, has finite injective dimension over By it
suffices to show that Ext%z(N,Rp) vanishes for all finitely generated
Bj-modules N, for large gq. Now we can write N = N’ ® B, for some
finitely generated B°-module N'. Then Ext. (N, R,) = Extg.(N', R) ®,
A,. Likewise for the injective dimension over A4,. So indeed R, is
dualizing.

Since the multiplicity of the indecomposable injective J,(p) is measured
by Ext4 (k(p) R,), where k(p) is the residue field, the lemma says that
J,(p) oceurs in the complex I in only one degree, say d(p). The fact that
the multiplicity #(p) is localy constant will be proved in part 4 below.

(2) Choose a € q — p, so in the exact sequence
0- (A/p)q = (A/p)g >M -0

the A -module M has finite length. Applying Ext%(—, R) to this sequence
we obtain an exact sequence of finitely generated A -modules

Ext((A/D)q, R) > Ext§((A/D),, R) — Ext§* (M, R)

for each ¢. By Nakayamas Lemma and part (1) we find that
Ext4((A4/p),,R) = 0 unless g + 1=d(q). Hence d(p) =d(q) — 1 as
claimed.

(3 This follows trivially from (2).

(4) Pick a prime ideal p c 4. Since R, is a duaizing complex in
D(Mod(A4, ® By)), the lemma tells us that the functors Ext{"(—, R,)
and Extd@)(— R ») are a duality between the categories of finite Iength
modules over A, and Bj . Furthermore since this dudlity is A4 ,-linear, it
restricts to a dual|ty between Mod,4,/p}; and Modf(Bp/p B,y for
every n > 1. Since Mod Ap/pp has an auto-duality, namely HomA( ,
J,(p)), it follows that there is an equivalence between Mod Ap/pp and
Mod, B, /p} B,. Morita Theory saysthere is an isomorphism d) B,/vyB,
S ,(n)(Ap/p ) for some number r(n).
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Since the isomorphisms ¢, al arise from the same equivalence, they can
be made compatible, and in particular we have r(n) = r(p) for dl n. In
the inverse limit we get 4, ® B = M, (A4,) as A,-algebras.

Since p was an arbitrary prime ideal of A4, we conclude that the
multiplication map B ®, B° — End (B) is bijective. Therefore B is Azu-
maya over A. As a projective A-module, the rank of B at a prime p is
precisely r(p)?, so the function r is localy constant. [

Remark 1.15. A complex such as I in Theorem 1.12 is called a residual
complex. It actually depends functorially on R: I = ER, where E is the
Cousin functor. Noncommutative variants of the Cousin functor are stud-
ied in[Ye2, YZ2]. In particular one can show that the complex I can be
made into a complex of bimodules, where on the right it is the minimal
injective resolution of R in Mod B°. It follows that R is an Auslander
dualizing complex, as defined in Section 2. In [Y Z2] we show that a more
complicated version of Theorem 1.13 holds when 4 = B is a Pl agebra.

ExampLE 1.16. Let A be a noetherian commutative regular ring of
infinite Krull dimension—see Nagata's example [Na, Appendix, p. 203,
Example 1]. The complex R = A is a pointwise dualizing complex (see
[RD, Sect. V.8]), and RHom (-, 4):Dy(Mod 4) — D,(Mod A) isadual-
ity. However, by Theorem 1.13, there is no dualizing complex in
D?(Mod(A4 ® B°)) for any right noetherian k-algebra B.

ExampLE 1.17. Let A be the non-catenary noetherian commutative
local ring of [Na, Appendix, p. 203, Example 2]. Then again there is
no dualizing complex in D’(Mod(A4 ® B°)) for any right noetherian k-
algebra B.

2. AUSLANDER DUALIZING COMPLEXES

The basic ideas in this section already appear in [Ye2, Sect. 1] (which
treats graded algebras).

Assume R € D’(Mod(A ® B°)) is a duaizing complex. Let M be a
finitely generated A4-module. The grade of M with respect to R is

Jr:a(M) =inf{q | Ext{(M,R) # O} € Z U {}.

Similarly define jz. g for a B°-module.
We are ready to define the notion appearing in the title of the paper.

DerINITION 21. Let 4 and B be k-algebras, with A4 left noetherian
and B right noetherian, and let R € D(Mod(A4 ® B°)) be a dualizing
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complex. We say that R has the Auslander property, or that R is an
Auslander dualizing complex, if

(i) for every finitely generated A-module M, integer ¢, and B°-
submodule N c Ext4(M, R) one has jz. z-(N) > g;

(ii) the same holds after exchanging 4 and B°.

Note that the role of the algebras 4 and B° is symmetric. Also note
that if R isan Auslander dualizing complex, then any shift R[n]isalso an
Auslander dualizing complex (the shift cancels out in the double dual).

ExamPLE 2.2. Let 4 be a commutative k-algebra and R a central
dualizing complex over it. From Proposition 1.12 it is clear that R is
Auslander. For a prime ideal p one has j,. ,(A/p) = d(p).

ExampLE 2.3. (@) If A is Gorenstein, i.e., the bimodule A has finite
injective dimension on both sides, then R = A is a dualizing complex over
A. If A isan Auslander—Gorenstein ring in the sense of [Bj], then R = A
is an Auslander dualizing complex.

(b) If A isafinite k-algebra, i.e, rank, A4 < o, then the bimodule
A* == Hom, (A4, k) isinjective on both sides, and R = A* isan Auslander
dualizing complex over A. Clearly j,. ,(M) = Ofor al M.

() Let A be the matrix algebra (¥%) where IV is a finite rank
k-module. Since A is hereditary it is aso Gorenstein, so both 4 and A*
are dualizing complexes, and if 1V # 0 they are non-isomorphic. According
to [ASZ, Example 5.4], the dualizing complex A is Auslander iff rank, V'
< 1. See also [Ye3, Sect. 3].

More examples of algebras with Auslander dualizing complexes are in
Examples 6.11-6.15.

The next definition is taken form [MR, Sect. 6.8.4] (with a dlight
modification—we alow negative dimensions).

DerINITION 24. An exact dimension function is a function dim which
assigns to each module M € Mod,; A a value dim M in an ordered set

containing —o°, R, and some infinite ordinals, and satisfies the following
axioms:

(i) dmO0O= —oo.
(ii) For every short exact sequence 0 > M' - M - M” — 0 one
has dim M = max{dim M’,dim M"}.
(iii) If pM = 0 for some prime ideal p, and M is a torsion A /p-
module, then dm M < dim A4/p — 1.
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Familiar examples of exact dimension functions are the Krull dimension
Kdim and (sometimes) the Gelfand—Kirillov dimension GKdim.

LEMMA 25. A function dim defined on Mod, A and satisfying axioms
()—(@i) (resp. axioms ()—(iii)) extends uniquely to a function on Mod A,
satisfying axioms (i)—(ii) (resp. axioms ()—(iii)) and the axiom

(iv) dim M = sup{dim M'|M’ c M finitely generated}.

The proof of the lemma is standard.

Usualy we will have a pair of dimension functions, one on Mod 4 and
the other on Mod B°; when necessary we shall distinguish between them
by writing dim, and dimy., respectively.

DeriNnITION 26. An exact dimension function dim is called finitely
partitive if given a finitely generated module M there is a number [, such
that for every chain of submodules M = M, 2 M, --- 2 M, with
dmM,;/M,,, = dim M one has [ < [,.

In the next two definitions (taken from [ASZ, Ye2]) dim denotes a
function on Mod A satisfying axioms (i), (ii), and (iv).

DEeFINITION 2.7. (1) A module M iscaled dim-pure if dim M’ = dim M
for every nonzero submodule M’ C M.

(20 A module M is caled dim-essentially pure if M contains an
essential submodule which is pure.

(3 A module M is cadled dim-critical if M #+ 0, and dim M /M’ <
dim M for every 0+ M' ¢ M.

DeriNiTioN 28. (D) Let M, (dim) be the full subcategory of Mod A4
consisting of modules M with dim M < ¢, and let M, ((dim) := M_(dim)
N Mod; 4.

(2) Given amodule M let I, @imM © M be the largest submodule
M’ c M such that dim M’ < q.

Since Mq(dim) is a localizing subcategory of Mod A the submodule
Ly @imM is well defined (and in fact Ly @imy 1S @ l€ft exact idempotent
functor). The corresponding subcategories of Mod B° shall be denoted by
M; (dim) and M, .(dim).

DerINITION 2.9. Let M be afinitely generated 4-module. The canoni-
cal dimension of M with respect to R is

Cdimg. M = —jp. (M) €7 U {—o0}.

Likewise define Cdimy,. 4. .
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The canonical dimension will not be an exact dimension function in
general. However, we have the following theorem, which generalizes
results of Bjork and Levasseur (the graded case was proved in [Y e2]).

THEOREM 2.10. If R is an Auslander dualizing complex then Cdimy,. , is
a finitely partitive exact dimension function.

The proof of this theorem appears later in the section. The key step is:

LEMMA 211. Let 0 > M' —» M’ — M" — 0 be a short exact sequence of
finitely generated A-modules. Then

Jroa(M) = inf{jp. ,(M"), jg, 4(M")}.

Proof. The proof goes along the lines of the proofs in [Bj, Lev]. By
Proposition 1.7 we have a convergent spectral sequence

Ef 9 = Ext} (Ext;7(M,R),R) = M, (212)

so there is a corresponding filtration (called the b-filtration in [Lev,
Theorem 2.2))

M=F M>F*'M> - >F¥*IM=0.

The Auslander condition tells us that E§'9 =0 if p < —q. So the
spectral sequence livesin a bounded region of the (p, ¢) plane: p > —q,q
< —j4.r(M) and p < d (see Fig. 1). The coboundary operator of E, has
bidegree (r,1 — r) and r > 2. We conclude that for every |p| < d there is
an exact sequence of A-modules

FPm

0= wriy

- EpP >0 >0 (2.13)
with Q” a subquotient of ®,_, EZ*"~7+3=" (cf. [B], Theorem 1.3; Lev,
Theorem 2.2)). B

By the Auslander property it then follows that jR;A(FPM/FP“M) >p
for dl M and p. Just as in [Bj, Proposition 1.6], one uses descending
induction on p, starting at p = d + 1, to provethat j,. ,(F’M) > p for all
p. This implies that

Jr: B° (EthR;A(M)(M, R)) =jR;A(M)'

Now continue exactly like in [Bj, Proposition 1.8]. ||

We conclude that Cdim,. , verifies axiom (ii). Axiom (i) holds trivially.
By symmetry Cdim,,. ;- also verifies axioms (i)—(ii).
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FIG. 1. The E, term of the spectral sequence (2.12) in the (p, ¢) plane.

THEOREM 2.14. Suppose R € D(Mod(A ® B°)) is an Auslander dualiz-
ing complex. Let M € Mod; A be nonzero and Cdimg M = n. Then:

(D Ext;"(M, R) is Cdimg-pure of dimension n.
(2) Foreach p, Extgf (Ext;?(M, R), R) is Cdimy-pure of dimension p
oris O.

(3)  For each p there is an exact sequence
0- FM,,,lM - I‘MPM — Extgf (Ext,”(M,R),R) —» Q” = 0,

functorial in M, where Cdimg OF <p — 2 and M, = M (Cdimy).

Proof. (1) Because the line g = —j. ,(M) is on the boundary of the
region of support of the spectral sequence (2.12), and the coboundary
operator of E, has bidegree (r,1 — r), r > 2, we see that for this value of
q there is a bounded filtration Ef¢ > E£9> ..., with EP9/EP9 a
subquotient of EZ*"4* @~ Now the abutment of the spectral sequence is
concentrated on the line p = —g of the (p, g)-plane, so E/? = 0 for
p > —q and r > 0. By Lemma 2.11 we conclude that for g = —j,. ,(M)
and p > —gq,

Jr: a(Exth (Ext;7(M,R), R)) = jr. 4(E§?) = p + 2

(cf. [Bj, formula (1.10)]. Just like in [Bj, Proposition 1.11] it follows that
Ext4(Ext4.(N, R),R) = O for p > jp. (M) and N = Ext/r«*(M, R). So
by [Bj, Proposition 1.9] we conclude that N is pure.
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(20 Take N :=Ext’(M,R). Then Cdimg. - N <p and part (1)
applies.

(3) By part (2), the sequence (2.13) and induction on p we see that
FM,,M =F7*M. |

For an integer g let M, == Mq(CdimR) C Mod A4 be the locaizing
subcategory from Definition 2.8. The filtration by dimension of support
{M_} of Mod 4 is called the niveau filtration in commutative algebraic
geometry. For each g the quotient category M, /M, _, is a locally noethe-
rian abelian category, and the full subcategory M, ,/M,_, ; is noetherian
(see [ASZ, Lemma 1.1]). By symmetry we have corresponding localizing
subcategories M; , € M; < Mod B°.

Recall from [ASZ, Section 1] that two abelian categories C and D are
said to be dual if they are anti-equivalent, i.e, if C is equivalent to the
opposite category D°. Two categories C and D are said to be in step duality
if there are filtrations by dense abelian subcategories

0=¢,.,cC, c- cC,=C and

ny
0=D,_,cDb, c--cCcD, =D
0 [¢]

ny

such that the quotient categories C,/C,_; and D,/D,_, are dua for al
i =ng,...,n,. Now Theorem 0.2 is a special case of:

THEOREM 2.15. Suppose R € D(Mod(A ® B°)) is an Auslander dualiz-
ing complex. Then Mod, A and Mod, B® are in step duality. More precisely,
for every q the functors Extiy(—,R) and Ext%.(—,R) induce a duality
between the quotient categories M, /M, _; , and M7 /M, _,

Proof. Use Theorem 2.14 and the proof of [ASZ, Theorem 1.2]. 1

COROLLARY 2.16.  For each q the category M, ;/M,_, , is artinian, i.e.,
every object has finite length.

Proof. By [ASZ, Lemma 11] the categories M, /M, _,, and
M. /M _, ; are noetherian, hence by Theorem 215 they are also
artinian. |

At last here is

Proof of Theorem 2.10. We already verified axioms (i) and (ii). The fact
that Cdimy, is finitely partitive is immediate from Corollary 2.16, and this
in turn easily implies axiom (iii)—cf. [MR, Corollary 8.3.6]. |

COROLLARY 2.17.  Every finitely generated A-module has a Cdim -critical
composition series.
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Proof. Thisis by Theorem 2.10 and [MR, Proposition 6.2.20]. I
Let

dy = inf{Cdim, M | M € Mod 4, M + 0}
d, = Cdimz A = sup{Cdim, M | M € Mod A} .

COROLLARY 2.18. Suppose R € D(Mod(A ® B°)) is an Auslander dual-
izing complex. Then

Kdim M < Cdim, M — d,

for all finitely generated A-modules M. In particular if Cdimgz M = d, then
M is artinian.

Proof. By induction, starting with ¢ = d,, Theorem 2.14 and Corollary
216 show that KdimM < g —d, fordl M e M, ;. |

Here is a generalization of [Bj, Theorem 1.14].

THEOREM 2.19 (Gabber's Maximality Principle). Let A and B be k-alge-
bras, with A left noetherian and B right noetherian, and let R € D(Mod(A ®
B°)) be an Auslander dualizing complex. Suppose N is a Cdim -pure A-mod-
ule with Cdim, N = n, and M is a finitely generated submodule. Then there is
a unique maximal module M such that M ¢ M € N, M is finitely generated,
and Cdimy, M/M <n — 2.

Proof. Note that we do not assume N is finitely generated. The
uniqueness is clear because Cdim; is an exact dimension function. So it
remains to show existence. If M is any finitely generated submodule of N
containing M, such that Cdimg; M/M <n — 2, then Ext;"(M,R) =
Ext;"(M, R). Hence, by Theorem 2.14(3), the module M embeds functori-
dly into the finitely generated A-module Exty(Ext,"(M, R), R). This
implies there is a maximal such M. |

The next two theorems generalize [GL, Theorems 1.4 and 1.6] by
eliminating the Gorenstein and Cohen—Macaulay conditions. From here
on we consider a single noetherian algebra A (i.e., A = B).

DerFiNITION 2.20. Let dim be an exact dimension function.

(D dimis caled symmerric if dim, M = dim, M for every bimod-
ule M finitely generated on both sides.

(2) dim is caled weakly symmetric if dim, M = dim . M for every
bimodule M which is a subquotient of A.
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LEMmMA 221,  Let dim be a weakly symmetric exact dimension function.

() Let M be a finitely generated dim-pure A-module, and let I =
Ann (M). If dim M = dim A /I then A/I is dim-pure.

(2) Let I be an ideal of A such that A/I is dim-pure and let q be a
prime ideal of A that is minimal over I. Then dim A/q = dim A /I.

Proof. Thisis completely analogous to [KL, 9.6 and 9.5]. |

Recall from [GL] that Spec A is said to have normal separation provided
that for any pair prime ideals p ¢ q, the factor q/p contains a nonzero
normal element of A4 /p. Under the assumptions of the lemma we say that
Tauvel’s height formula holdsin A provided

height p + dim A/p = dim A4

for all primes p.

THEOREM 2.22. Suppose that A is a noetherian k-algebra, R is an
Auslander dualizing complex over A, and Cdimy is weakly symmetric. Let
b < q be prime ideals of A with height q/p = 1. If there exists an element
a € q — p that is normal modulo p, then Cdimy A/p = Cdim, A/q + 1.

Proof. Use the proof of [GL, Theorem 1.4] but replace GKdim by
Cdimyg, and use Lemma 2.21 instead of [Len, Lemmas 2 and 3].

THEOREM 2.23. Suppose that A is a noetherian k-algebra, R is an
Auslander dualizing complex over A, and Cdimy is weakly symmetric. If
Spec A is normally separated, then A is catenary. If in addition A is prime,
then Tauvel’s height formula holds.

Proof. The proof of [GL, Theorem 1.6] works here after we replace
GKdim by Cdim,. 1

We call attention to Question 3.15 regarding the possible symmetry of
Cdimyg.

The Macaulay property of [SZ] is adapted in the following way, to be
used later in the paper.

DEFINITION 2.24. Suppose R is an Auslander dualizing complex over
A. Let dim be an exact dimension function on finitely generated A-mod-
ules. If there is some integer ¢ such that

dmM = Cdim; M + ¢

for al M € Mod, A4, then we sy R is Macaulay with respect to dim, or
that R isdim-Macaulay.
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Note that if R = A, then ‘**GKdim-Macaulay’’ is equivalent to ‘* Cohen—
Macaulay'’ asit isused in [Bj, Lev, ASZ, SZ]. This is because GKdim M +
jrM) = ¢ =dim A in this case.

ExampLE 2.25. If A is a commutative affine k-algebra and R is any
central dualizing complex over A4, then R is Auslander and GKdim-
Macaulay. In this case we aso have Kdim M = GKdim M for al finitely
generated A-modulesin M.

3. RIGID DUALIZING COMPLEXES

In this section we consider dualizing complexes which satisfy a special
condition discovered by Van den Bergh [VdB]. Rigid dualizing complexes
are unique and even functorial. Furthermore if R is an Auslander rigid
dualizing complex then the canonical dimension Cdimy, is particularly well
behaved (as examples indicate; see Question 3.15). By default 4 and B
denote noetherian k-algebras.

First we shall need some more notation for bimodules. Suppose A and
B are k-algebras. For an element a € A we denote by a° € A° the same
element. Thus for a;,a, € 4, aj - a5 = (a,-a,) € A°. With this notation
if M isaright A-modulethen theleft A° actionisa® -m =m-a,m € M.
The algebra 4° has an involution A° — (A°)°,a; ® a5 — a, ® a] which
dlows us to regard every left A°-module M as a right A°-module in a
consistent way:

(a,®a%) m=(a,®a) m=m-(a,®a}) =a,-m-a,.

Given an (A ® B°)-module M and a (B ® A°)-module N we define a
mixed action of 4° ® B¢ on the tensor product M ® N as follows. A¢ acts
on M ® N by the outside action

(a,8a3) - (m®n) = (a;-m) ® (n-ay),
whereas B actson M ® N by the inside action
(by ®b3) - (m & n) = (m-by) & (by-n).

By default we regard the outside action as a left action and the inside
action as aright action. If 4 = B and M = N then the two actions of A4°
on M ®M are interchanged by the involution m, ® m, — m, ® m,.
However, for the sake of definiteness in this case, given an A°-module L,
Hom ,.(L, M ® M) shall refer to the homomorphisms L. - M ® M which
are A°-linear with respect to the outside action.
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DeriniTioN 3.1 [VdB, Definition 8.1]. Suppose R is a dualizing com-
plex over A. If there is an isomorphism

¢:R — RHom(A,R ®R)
in D(Mod A4°), we cdl (R, ¢) a rigid dualizing complex.

It is obvious that if R is rigid, then any shift R[n], for n # 0, is no
longer rigid. Van den Bergh proved that a rigid dualizing complex (R, ¢)
over A isunique, up to an isomorphism in D(Mod A°) (see [VdB, Proposi-
tion 8.2)). Below we extend this result by proving that rigid dualizing
complexes are functorial, in a suitable sense.

Let 4 — B be a k-algebra homomorphism. Given M € D*(Mod B), N
€ D*(Mod 4), and a morphism : M — N in D(Mod A4), ¢ factors
naturally through R Hom (B, N). This can be seen by replacing N with
an injective resolution 7 in D*(Mod A4), and then we can take ¢ to be a
homomorphism of complexes. The image of ¢ will then land inside
Hom ,(B, I). The same fact is true for bimodules.

We say a k-algebra homomorphism A4 — B if finite if B is finitely
generated as a left and as aright A-module.

THEOREM 3.2. Let A — B be a finite k-algebra homomorphism. Suppose
A and B have rigid dualizing complexes (R ;, ¢,) and (R, ¢p), respectively.
Then there is at most one morphism {y : Ry — R in D(Mod A°) satisfying
conditions (i) and (ii) below:

(i) & induces an isomorphism
Ry, = RHom, (B,R,) = RHom (B, R,)

in D(Mod A°).
(i) The diagram

¢
R, — RHom.(B, Ry ® Ry)

] wew|
¢,
R, —>RHom(A4,R, ®R,)

in D(Mod A¢) is commutative.

The theorem is proved after this lemma. Given a k-algebra homomor-
phism 4 — B, denote by Z,(A) C B the centralizer of A.

LEMMA 3.3. Let A — B be a finite k-algebra homomorphism. Suppose A
and B have dualizing complexes R, and Ry, respectively, and  : R, — Ry
is a morphism in D(Mod A°) satisfying condition (i) of the theorem. Then
HOMpod 4(Rp, Ry) is a free left and right Zz( A)-module with basis .
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Proof. Denote by D = RHom (—,R,) and D° == RHom ,(—,R,)
the dualizing functors. By assumption R, = D°B. Applying the functor D
we get isomorphisms of left Z,( A)-modules

HOMpwod 4e( Ry Ry) = HOMp o4 4(D° B, D°A)
= HoMpyoq 4( A, B)
= Hom,(A,B) =Zyz(A),
and likewise for the right action. i

Proof of the Theorem. Assume ' is another such isomorphism. Ac-
cording to the lemma above,

Pr=(by® Y= (10b3)¢
for suitable b, € Zz(A4)*. So

ey =(b@b3)(y®Y).

Now the diagram in condition (ii) consists of morphisms in D(Mod A4°).
Since multiplications by b, and b’ are A*linear, we see that

(by® )i = (by ® b5) ¢ € HOMpyo4 4e(Rp, Ry)-

Hence dividing by the unit b, ® 1, wesee that b, = 1. |

COROLLARY 3.4. A rigid dualizing complex (R, ¢) over A is unique up to
a unique isomorphism.

Proof. Suppose (R', ¢') is another rigid dualizing complex. We claim
that there is an isomorphism ¢ : R — R’ in D(Mod A4°) which satisfies
condition (ii) of the theorem. By Theorem 3.2 such ¢ is unigue.

To produce ¢, choose any isomorphism ' : R — R’, which we know
exists by [VdB, Proposition 8.2]. Then by Lemma 3.3 there are a; € Z(A)*
such that

(1@ 1) ' =(1ed) W =¢ '(Jey)d
The isomorphism
Pp=(a,®@ DY’ = (1@dr)y'.
will satisfy condition (ii). 1

Thus we may speak of the rigid dualizing complex of A (if it exists).
Lemma 3.3 can be sharpened when 4 = B.



RINGS WITH DUALIZING COMPLEXES 23

ProrosiTION 3.5. Let (R, ¢) be a rigid dualizing complex over A. Then
the two k-algebra homomorphisms

A p:Z(A) = Endpog 4e(R)

from the center of A, namely left and right multiplication, are both isomor-
phisms, and are equal.

Proof. By Lemma3.3with 4 = B and ¢ = 1, weseethat A and p are
isomorphisms. Take a € Z(A), and let a = p~A(a) € Z(A). Using the
definition of the mixed action on R ® R and the rigidification isomor-
phism ¢, the commutation (or conjugation) of a across R istransferred to
commutation of a’ across 4. Since @' does commute with A it follows that
Ma) = p(a) (and so infact a' = a). |

We will often omit reference to the rigidifying isomorphism ¢.

CoROLLARY 3.6. If R is a rigid dualizing complex over A then for any q
the cohomology bimodule HR is central over Z( A).

DeriniTioN 3.7. Let 4 — B be a finite homomorphism of k-algebras.
Assume the rigid duaizing complexes (R, ¢,) and (R, ¢b,) exist. If there
is a morphism ¢ satisfying the conditions of Theorem 3.2 then we call it
the trace morphism and denote it by Try , .

The next corollary is obvious.

CoOROLLARY 38. Let A — B and B — C be finite k-algebra homomor-
phisms. Assume the rigid dualizing complexes (R, ¢,), (R, dg), and
(R¢, ¢c) and the trace morphisms Tty , , and Tre ,p exist. Then Tr.,
exists too, and

TrC/A=TrB/ATrC/B.

The existence of the trace morphism alows us to transfer good proper-
tiesof R, to Ry.

PropPosITION 3.9. Let A — B be a finite homomorphism of k-algebras,
and assume the rigid dualizing complexes R , and R and the trace morphism
Trg, 4 exist.

(D) Let C be any k-algebra. Then for M € D(Mod(B ® C°)) there is a
functorial isomorphism

RHomgz(M,Rgz) = RHom, (M, R,)

in D(Mod(C ® A4°)).
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(2) If R, is Auslander then so is Rp.
(3)  For any B-module M, Cdimy, . ,M = Cdimg . ;M.
(4 If R, is GKdim-Macaulay, then so is R.

(5 Suppose A — B is surjective. If R, is Kdim-Macaulay then so
is Ry.

Proof. (1) We can assume R, and Ry are complexes of injectives over
A® and B¢, respectively, and Trg,, is a homomorphism of complexes.
Then we get a functorial morphism R Homz(M, R;) - RHom (M, R )
in D(Mod(C ® A4°)). To prove it's an isomorphism we can forget the
C-module structure. Because the two functors are way-out in both direc-
tions (see [RD, Sect. 1.7])) and they send direct sums to direct products, it
suffices to check for an isomorphism when M = B. But that’s given.

(2,3 Let M be a finitely generated B-module and N C
Ext4(M, R;) a B°-submodule. Then by part (1), N € Ext{(M,R,) as
A°-modules, and for every p, Ext4.(N, R;) = Ext4.(N, R,) as A-modules.
This proves the Auslander condition for B and the dimension equality for
finitely generated B-modules.

(4 Thisfollowsfrom part (3) and the fact GKdim , M = GKdim, M.
(5 Thisissimilar to (4). 1

DeriniTioN 3.10. Suppose A has an Auslander rigid dualizing complex
R. Then we denote the canonical dimension Cdimy by Cdim.

ExampLE 3.11. Suppose A is an affine k-algebra and finite over its
center. Then we can find a smooth integral commutative k-algebra C (eg.,
a polynomial algebra), and a finite homomorphism C — Z(A). Say
Kdim C = n. Since Q¢ ,¢[n] is arigid dualizing complex over C, it follows
from [Ye3, Proposition 5.9] that

R = RHom.(4,Q¢ ,[n])

isarigid dualizing complex over A.

ExampLE 3.12. Let A be the agebra (§}) where IV is a finite rank
k-module. The rigid dualizing complex is A* := Hom, (A4, k). Now 4 is
hereditary, hence Gorenstein, so the bimodule A4 is a dualizing complex.
When V' # 0 the dualizing complexes A and A* are not isomorphic, so 4
is not rigid then.

ExampLE 3.13. Let ¢,,¢,,... be a countable sequence of commuting
indeterminates and let C := k(t,,1,,...) be the field of rational functions.
We claim that as k-algebra, C has no rigid dualizing complex. Since any
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dualizing complex over C has to be of the form R = C“[n] for an
automorphism o and an integer n (by [Ye3, Corollary 4.6 and Proposi-
tions 3.4 and 3.5)), it suffices to prove that Ext..(C,C¢) = 0 for al i. This
follows from the next lemma with n = 0.

LEMMA 3.14. Let D, = C°/I where I is the ideal generated by the
elementsfj =x;®1-1®ux; forj=1,...,n. Then Ext..(C,D,) = 0O for
alli,n = 0.

Proof.  Assume on the contrary that Ext..(C, D,) #+ 0 for some i and n.
Let i, be the smallest such i. Since f, , is nonzero in the domain D,
there is a short exact sequence

OHDnE)Dn_)Dn+1_)O

of C°-modules. That induces an exact sequence

0= Extie- {(C, D, .,) — Extie(C, D,) 25 Extia(C, D,)
But f,,, annihilates the C*-module C, which implies Exti.(C, D,) = 0,
contradicting the choice of i,. |

We end the section with a basic question.

QuEsTION 3.15. Let R be a rigid dualizing complex and M an A-bimodule
finitely generated on both sides. Is there a functorial isomorphism
R Hom (M, R) = RHom (M, R)? Or, at least, is Cdimg, ,M =
Cdimg. .o M?

For a partial answer turn to Section 6, where the presence of auxiliary
filtrations allows us to take advantage of results in Sections 4-5 on graded
algebras.

4. DUALIZING COMPLEXES OVER GRADED ALGEBRAS

In this section we consider connected Z-graded k-algebras, namely
algebras 4 = @, , A4, with 4, = k and A4, afinitely generated k-mod-
ule.

For such an algebra A let GrMod A be the category of Z-graded left
modules, with degree 0 homomorphisms. For M, N € GrMod A we write
M(n) for the shifted module with M(n), = M, . ;, and

+i1

Hom$ (M, N) == @ Homgyoq 4(M, N(n)).

neZ

There is a forgetful functor GrMod A — Mod A. Observe that
Hom% (M, N) c Hom ,(M, N) with equality when M isfinitely generated.
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GrMod 4 is an abelian category with direct and inverse limits, enough
injectives, and enough projectives. Let D(GrMod A4) be the derived cate-
gory. The derived functors RHom% (M, N) and M ®; N are calculated
just as in the ungraded case, see Section 1, but using graded-projectives or
graded-injectives.

We say M € GrMod k is locally finite if each M, is afinitely generated
k-module. Let M* := Hom{¥' (M, k). Denote by D;(GrMod A) the subcate-
gory of complexes with locally finite conomologies. Matlis duality says that
M = M** for M € D;(GrMod A).

We denote by m the augmentation ideal ®,_ , A, of A, and we write
I, M for the m-torsion submodule of a graded A-module M. There is a
derived functor RT,,, which is calculated by graded-injectives (see [Y el)).

n
The cohomology modules are H'RT,, M = lim, _, Ext'(A/A. ,, M). We

write m°® for the augmentation ideal of A°.

The definitions and results of the previous sections can all be translated
to the graded category by adding the adjective “graded’’ where needed,
like “graded dualizing complex,”” ‘‘graded Auslander property,”’ etc. The
proofs of the graded variants of these results are identical to the ungraded
ones, so there is no need to repeat them. In the rest of the paper we shall
refer to such a result by writing something like “according to the graded
variant of Theorem ....”

=>n?

Remark 4.1. Let G be any finitely generated abelian group. Fix an
isomorphism G = Z" X T, where T is afinite group, and a basis g, ..., g,
of Z'. Let G, be the semigroup generated by O and the elements
g+tl<i<riteT.Forg g €Gwewrteg>gifg—g €G,,and
this defines a partial order on G. A G-graded k-algebra A is called
connected if A = GBgEG+Ag, Ag =k, and each 4, isfinitely generated as
amodule over k. The augmentation ideal of 4 ism = &, ,4,.

Note that the group homomorphisms ¢ : G — Z sending g; — 1 makes
A into a connected Z-graded algebra, with 4, = €B¢(g):n Agne’.

It is not hard to see that all results in this paper which are stated for
connected Z-graded algebras are also valid for connected G-graded k-alge-

bras, for any G as above.

Throughout this section A and B are connected graded noetherian
k-algebras.

DEerFINITION 4.2 [Yel, Definition 4.1]. A balanced dualizing complex
over A is a graded dualizing complex R such that

RI' R=RT, .R = A*

m m°

in D(GrMod A°).
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A balanced duaizing complex R is unique up to isomorphism in
D(GrMod A4°¢), and its endomorphisms are just elements of k. Thus if we
choose an isomorphism ¢ : RT,, R — A* in D(GrMod A°), the pair (R, ¢)
iS unique up to a unique isomorphism.

It had been known for some time (by [Yel]) that balanced dualizing
complexes exist for Artin—Schelter Gorenstein agebras, twisted homoge-
neous coordinate algebras, and algebras finite over their centers. Recently
additional existence results became available, due to the work of Van den
Bergh. First recall the following definition taken from [AZ].

DeriniTiOoN 4.3. The condition y holds for a noetherian connected
graded k-algebra A if for every M € GrMod, A4 and integer i, Ext!,(k, M)
is a finitely generated k-module.

In view of [AZ, Proposition 3.1(3)], this definition is equivalent to [AZ,
Definition 3.2]; and by [AZ, Proposition 3.11(2)] it is equivalent to [AZ,
Definition 3.7]. The next lemma provides further characterization of the
condition y. Recall that a graded module M is said to be right bounded if
M, =0for ns 0.

LEMMA 44. Let A be a noetherian connected graded k-algebra and
M € GrMod; A. Then the following are equivalent:

(i) Ext'(k, M) is a finitely generated k-module for all i.
(i) H'RT,, M is right bounded for all i.
(iii) H'RT,, M is an artinian A-module for all i.

m

Proof. (i) < (ii) is by [AZ, Corollary 3.6(3)]. (iii) = (ii) is immediate,
since the socle of H'RI, M is a finitely generated k-module, hence
bounded. Finally assume (i), and let I be a minima graded-injective
resolution of M. From [Yel, Lemma 4.3] it follows that T, I’ = A* ®

n

Ext’,(k, M), which is artinian. Hence H'RT',, M is artinian. |1

m
In an earlier paper we proved the next theorem.
THEOREM 4.5 [YZ1, Theorem 4.2]. Let A be a noetherian connected
graded k-algebra. If A has a balanced dualizing complex then the condition x

holds for A and A°, and the functors I, and 1. have finite cohomological
dimensions.

The converse, which is quite harder, was proved by Van den Bergh.

THEOREM 4.6 [VdB, Theorem 6.3]. Let A be a noetherian connected
graded k-algebra. Assume the condition x holds for A and A°, and the
functors T, and 1. have finite cohomological dimensions. Then

RA = (R 1—‘Im A)*

is a balanced dualizing complex.
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Let us summarize some other known results related to the balanced
dualizing complexes.

THEOREM 4.7 (Loca Duality). Let R be a balanced dualizing complex
over a noetherian connected graded k-algebra A. Then for any graded k-alge-
bra B and any M € D(GrMod(A ® B°)) there is a functorial isomorphism

RHomY (M, R) = (R[,, M)*.

This is proved by combining [VdB, Theorems 5.1 and 6.3]. The theorem
was first proved in [Yel], but only for M D}’(GrMod A).

ProrosiTION 4.8 [VdB, Proposition 8.22)]. A balanced dualizing com-
plex R is rigid in the graded sense.

Remark 4.9. According to an exercise in [VdB] (whose only proof we
know is quite involved), if I is a graded-injective 4-module, then I has
injective dimension < 1in Mod A. An immediate consequence of this fact
isthat a graded dualizing complex R over A isaso an ungraded dualizing
complex. The special case we need, namely that a balanced dualizing
complex R isrigid in the ungraded sense, is proved by other means in
Corollary 6.7.

Here is another result from [VdB]. Let us write m ,. for the augmenta-
tion ideal of A, som . =m®A4A° +A4® m°.

THEOREM 4.10 [VdB, Corollary 4.8]. Assume A has a balanced dualizing
complex R. Let M € D(GrMod A°) have finitely generated cohomology mod-
ules on both sides. Then there is a functorial isomorphism

RT;

m

M =RI, M=R[,.M.

We obtain the following interesting result:

CoROLLARY 4.11. Let R be a balanced dualizing complex over A. Then
there is a functorial isomorphism

RHom (M, R) = RHom (M, R)

for M € D(GrMod A°) with finitely generated cohomology modules on both
sides.

We shall write Cdim, instead of Cdimg. , when R is the balanced
dualizing complex, and when we are working in GrMod A4. Since a bal-
anced dualizing complex is rigid in the ungraded sense (by Corollary 6.7),
this is consistent with Definition 3.10.
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DeriniTioN 412, If A has a graded Auslander balanced dualizing
complex R we say A is graded Auslander. Furthermore if dim is an exact
dimension function on graded modules, and if R is graded dim-Macaulay,
then we say A is graded Auslander dim-Macaulay.

According to [Yel, Theorem 3.9], any two graded dualizing complexes
R,, R, satisfy R, = R, ®, A’(m)[n], for an automorphism o and integers
n, m. It followsthat R, is graded Auslander iff R, isso. In particular, if 4
is graded Gorenstein, then A is graded Auslander—Gorenstein in the
usual sense iff it is graded Auslander in the sense of Defini-
tion 4.12.

Taking cohomologies in the previous corollary we get:

COROLLARY 4.13.  Suppose A is graded Auslander. Then Cdim is symmet-
ric on graded modules. That is to say, if M is a graded A-bimodule, finitely
generated on both sides, then Cdim, M = Cdim M.

If A isgraded Auslander we have a bound on Krull dimension of graded
modules:

THEOREM 4.14. Suppose A is graded Auslander. Then

m

Kdim M < Cdim M = sup{q | HIRT, M # 0} <

for all finitely generated graded A-modules M.
Proof. By Theorem 4.7, if M +# 0, we have Cdim M = sup{gH?RT, M

# 0}. Next for a finitely generated graded 4-module M the Krull dimen-
sion is the same when computed in GrMod A and in Mod 4. By the
graded variant of Corollary 2.18 we get Kdim M < Cdim, M, since clearly

dy=0. 1

LEMMA 45. Let A — B be a finite homomorphism of noetherian con-
nected graded k-algebras, with augmentation ideals m ,,my. Assume A
satisfies condition x. Then there is a functorial isomorphism

R, M=RT, M

mpy my

for M € D*(GrMod B).

Proof. For any homomorphism 4 — B of graded algebras there is a
functorial morphism RI',, M — RI[,, M in D(GrMod A4). By [AZ, Lemma

8.2], the extra assumptions guarantee that H”RI, M —» H?’RI, M is
bijective for al p. 1
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The following theorem is a generalization of [Jol, Theorem 3.3].

THEOREM 4.16. Let A — B be a finite homomorphism of graded k-alge-
bras and let R, be a balanced dualizing complex over A. Then:

(D) B has a balanced dualizing complex Rp.

(2) There is a morphism Trg,,: Ry = R, in D(GrMod A°), which
satisfies conditions (i) and (ii) of Theorem 3.2.

Proof. From [VdB, Theorem 6.3] we know that 4 and A4° satisfy y,
and I', and I,. =T, have finite cohomological dimensions. So by
Lemma 4.15 the same is true for B. Thus B has a balanced dualizing
complex R, = (RI,, B)*.

The morphism 4 — B in D(GrMod A°) induces a morphism (RT,, B)*
- (R, A)*, dso in D(GrMod A°). But (RT, B)* = (RT,, B)* and we
get Trg, ,: Ry = R,. The isomorphism of functors RI, = RI,. of
[VdB, Corollary 4.8] shows that Tr, , , is the same when calculated on the
right, i.e, using RT..

Condition (i) of Theorem 3.2 is a consequence of local duality. To verify
condition (i) we again view A — B as a morphism in D(GrMod A4°¢). By
[VdB, Theorems 4.7 and 5.1] we get a commutative diagram

(RT, B — (RT

Mpe

B)* — RHom.(B,(RT,, B*)*)
(RT,, Ay — (RT, A — RHom .(4,(RT,  A)*).
Finaly by [VdB, Theorem 7.1]
(RT,, . A°)" = (R, A)" ® (RL,;A)",

n e n 4

and of course the same for B. |}

Applying the graded variant of Proposition 3.9 we obtain the following
corollary.

COROLLARY 4.17. Let A and B be as in Theorem 4.16

(1) There is a functorial isomorphism
RHom% (M, Rz) = RHomY (M, R )
for all M € D(GrMod B).
(2) If A is graded Auslander then so is B.
(3 Cdim, M = Cdim, M for M € GrMod B.
(4 If A is graded Auslander GKdim-Macaulay then so is B.

(5 Suppose A — B is surjective. If A is graded Auslander Kdim-
Macaulay, then so is B.
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The next three propositions show that the graded Auslander property
can be transferred from one algebra to a related algebra.

ProrosiTION 4.18.  Suppose A has a balanced dualizing complex. Let dim
stand for either Kdim or GKdim.

(D Let a,b be graded ideals. If the quotient algebras A/a and A /b
are graded Auslander (resp. and graded dim-Macaulay), then so is A/ab.

(2) Let a be a nilpotent graded ideal of A. If A/« is graded Auslander
(resp. and graded dim-Macaulay) then so is A.

(3  If for every minimal graded prime ideal p the quotient algebra A /p
is graded Auslander (resp. and graded dim-Macaulay), then so is A.

Proof. (1) As usual we write D = RHomY(—, R) where R is the
balanced dualizing complex. We may assume ab = 0. Given a finitely
generated graded module M consider the exact sequence 0 - bM — M
- M/bM — 0, and note that b M isan A/a-module. For any i there is
an exact sequence H'D(M /b M) - H'DM — H'D(bM). Since A/a and
A/b have the graded Auslander property, the subquotients of
H'D(M/bM) and H'D(bM) have Cdim no more than i. Observe that
here we are using Corollary 4.17. Hence by the long exact sequence of
duality, submodules of H'DM have Cdim no more than i. The assertion
about the Macaulay property is clear.

(2) Use part (1) and induction.

(3 Let p,,...,p, bethe minima primeideals of 4. Then (IT;p,)"
= 0 for some n, and we can use parts (1) and (2). 1

ProposiTION 4.19. Let A — B be a finite homomorphism of connected
graded algebras, and assume B = A ® L as graded A-bimodules. If B has a
balanced dualizing complex then so does A.

Proof. Let M be a finitely generated graded A-module. Then by
Lemma 4.15 we get

RT, (B ® M) =RI

m

(B® M) =RI, M®RI

mA(L ®A M)
By Theorem 4.5 and Lemma 4.4 applied to B, we see that the graded
B-module H'RT,, (B ® M) is right bounded and vanishes for large i.

Hence the same is true for the 4-module H"RFmAM. Now apply Theo-
rem 46 |

We do not know if under the assumptions of the proposition above the
Auslander property can be transferred from B to A. However, as shown to
us by Van den Bergh this istrue in a specia case:
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ProposiTiION 4.20. Let G be a finite group of order prime to char k,
acting on B by graded k-algebra automorphisms, and let A == B be the fixed
ring. If B is graded Auslander then so is A.

Proof. Given a finitely generated A-module M and a graded A°-sub-
module N c Exté(M, R ,) we want to prove that Ext4.(N, R,) = O for al
p<gq.lLet L ={beBIL,.;8(b) =0}, 0 B=A4 @& L. We have isomor-
phisms of graded A°-modules

Ext4y(M,R,) ® Ext4(L ®, M,R,)
= Ext4(B ® M,R,) = Ext4{(B ®, M,R,)
that respect the G-action. Note that G acts trividly on Ext4(M, R)).

Consider the graded B°-module N - B c Ext4(B ®, M, Rp). Clearly N - B
=N+ N-L.Butif

n=Ynl,eNN(N-L)

with n, € N and /; € L, then
n=1G" T g(Tnd) = Tn-l61 T gt - 0.
g€G i i g€G
We conclude that N-B =N & N - L as graded 4°-modules. Therefore
Ext4. (N,R,) ® Ext/-(N-L,R))
= Extf.(N-B,R,) = Ext}.(N-B,Ry) = 0.

5. GRADED ALGEBRAS WITH SOME
COMMUTATIVITY HYPOTHESIS

In this section we continue the discussion of balanced dualizing com-
plexes over connected graded noetherian k-algebras, but now we look at
algebras which have some commutativity hypothesis, like PlI, FBN, or
enough normal elements. The main result here is.

THEOREM 5.1. Let A be a noetherian connected graded k-algebra. Sup-
pose t € A is a homogeneous normal element of positive degree, and let
B:=A4/().

(D) If B has a balanced dualizing complex, then so does A.
(2) If in addition B is graded Auslander, then so is A.

(3 If in addition B is graded Kdim (resp. GKdim)-Macaulay, then so
is A.
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The “‘classicd’’ case of this theorem i.e., when B is Gorenstein and ¢ is
aregular element (i.e., a non-zero-divisor), is [Lev, Theorem 3.6]. Part (1)
of the theorem is a trivial consequence of Theorems 4.5 and 4.6, and [AZ,
Theorem 8.8].

The proof of parts (2) and (3) appears after a series of lemmas. In these
lemmas we assume that 4 has a balanced dualizing complex (by part (1))
and B is graded Auslander. The modules M, N, ... will be finitely gener-
ated graded by default. By Proposition 4.18 we can assume A is prime,
hence ¢ is a regular element. The same proposition tells us that

A/(t") isgraded Auslander for al n > 1. (5.2)

We denote by D the duality functor RHom (—, R), where R is the
balanced dualizing complex of A. Recall that according to Theorem 4.7,
H™'DM = (R'T,, M)*. By definition Cdim M = sup{i[H 'DM # 0}, so triv-
ialy

Cdim M < max{Cdim M',Cdim M/M'} (5.3)
forall M' Cc M.

LemMMA 54. If M is t-torsion-free then Cdim M = Cdim M /tM + 1. If
d = Cdim M then H DM is t-torsion-free.

Proof. Let o be the automorphism of 4 suchthat t-a = o(a) - ¢, and
let “M be the corresponding twisted module. Then we have an exact
sequence

07" "M(—1) 5 M- M/tM - 0,
where [ is the degree of ¢. It is easy to see that HD( M(=1)) =
(H'DM)” (1), so there is a long exact sequence
HID(M/tM) - HDM -5 (HIDM)” (1) » HI*1D(M/tM). (5.5)

If H*D(M/tM) = 0 then by the graded Nakayama Lemma we get
H'DM = 0. Therefore

Cdim M/tM < Cdim M < Cdim M/tM + 1.

Now let d = Cdim M. We need to show that H “D(M /tM) = 0. If not,
then Cdim M /tM = d, and hence also Cdim M /t"M = Cdim t"~ M /t"M
=d for al n > 1. According to Proposition 4.18 the algebra A /(¢)" has
the graded Auslander property. This implies that

CdimH~“D(¢:""*M/t"M) =d  and

CdimH " “*'D(M/t" M) <d — 1.
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Looking at the exact sequence
0—>HD(M/t" M) - H “D(M/t"M)
= HD ("M /"M ) 5 H=4FID(M /1"~ M)
we see that ¢ cannot be an injection. Therefore
H™“D(M/t""*M) ¢ H™*D(M/t"M) C H™D(M).

But this is true for all n > 1, contradicting the noetherian property of
H=4D(M). The upshot is that H/D(M /tM) = 0. Taking i = —d in (5.5)
we conclude that H¢DM is t-torsion-free. |

LEMMA 56. Let N be the t-torsion submodule of M. Then
Cdim M = max{Cdim N,Cdim M/N}.

Proof. Let d be the right hand side. Trividly Cdim M < d holds.
Assume Cdim M < d. Dualizing the exact sequence 0 > N - M — M /N
— 0 we obtain a long exact sequence

. - HID(M/N) - H'DM — H'DN — HI*'D(M/N)
N Hi+lDM_)

and taking i = —d — 1 we see that H “D(M/N) =0, so Cdim M/N
<d. Hence CdimN =d. Also taking i = —d we see that H ‘DN
c H ?*"*™D(M/N). Now H YDN is t-torsion, yet by Lemma 54,
H-4*D(M/N) is t-torsion-free. We conclude that H DN = 0, which is
a contradiction. i

LEMMA 5.7. Cdim M = max{Cdim L,Cdim M /L} for every L C M.

Proof. By (5.3) it remains to prove >. Let N be the ttorsion
submodule of M. By (5.2) we have Cdim N > Cdim N N L. On the other
hand by Lemma 5.6, Cdim M = max{Cdim N, Cdim M /N} and Cdim L =
max{Cdim N N L,Cdim L/N n L}. Hence it suffices to prove that
Cdim M/N = max{Cdim L /N n L, Cdim M /L}. So we may assume M =
M /N is t-torsion-free.

If P:=M/IL isaso t-torsion-free then we get a short exact sequence

O—->L/tL >M/tM - P/tP — 0.

Hence the assertion follows from Lemma 5.4.
In general let L' © L be such that L' /L is the ¢-torsion submodule of
M/L.So t"L' C L for some n. By Lemma 54,

Cdim L' /L < Cdim L /t"L’ = Cdim L' — 1
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and hence, from the long exact sequence of duality, we get Cdim L =
Cdim L. Applying the previous paragraph and Lemma 5.6 we have

Cdim M = max{Cdim L',Cdim M /L}
= max{Cdim L,Cdim M/L’}

max{Cdim L,Cdim L' /L,Cdim M/L}
max{Cdim L,Cdim M /L}

and we finish the proof. |
LEMMA 5.8.  Suppose t" kills the t-torsion submodule of M. Then
Cdim M < Cdim M/t"M + 1.
Proof. Let N be the ¢-torsion submodule of M and P := M /N. Then

t"M = t"P is a t-torsion-free submodule of M and P/t"P =M /(N &
t"M). By Lemmas 5.4 and 5.6,

Cdim M = max{Cdim N,Cdim P} = max{Cdim N,Cdim P/t"P + 1}.
On the other hand by lemma 5.7,
Cdim M /t"M = max{Cdim N,Cdim P/t"P}.
It remains to combine these equalities. 1

Proof of Theorem 5.1. As mentioned above part (1) is a consequence of
Theorems 4.5 and 4.6, and [AZ, Theorem 8.8].

(2) Recall that the Auslander condition says that if N € H DM then
Cdim N < i. We can assume A isprime and ¢ isregular. By Lemma 5.7 it
suffices to prove that CdimH ‘DM < i for al i. According to (5.2) the
inequality holds for ¢-torsion modules, so using the long exact sequence of
duality we may assume that M is ¢-torsion-free.

Choose n such that ¢" kills the ¢-torsion submodule of H™'DM. The
short exact sequence

0> M5 “"M(nl) »" (M/t"M)(nl) - 0
givesrise to a long exact sequence
- > (HDM)” (=nl) L5 H- DM — P
= (H™*D(M/t"M))" (—nl) — .

Since M /t"M is t-torsion, P is also ¢-torsion, and every submodule of P
has Cdim < i — 1, So according to Lemma 5.8, CdimH ‘DM < (i — 1) +
1=
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(3) Assume B is graded GKdim-Macaulay. Since A4 /(") is graded
GKdim-Macaulay for n > 1 (by Proposition 4.18), it suffices to show that
Cdim M = GKdim M for t-torsion-free modules. We know that in this
case GKdim M = GKdim N /tM + 1, and by Lemma 5.4 this is true aso
for Cdim M.

Finaly assume B is graded Kdim-Macaulay. Again we need only con-
sider M whichis¢-torsion-free. It isclear that Kdim M > Kdim M /tM + 1.
Hence it follows from Lemmas 5.4 and 5.7 that Kdim M > Cdim M. But
by Theorem 4.14, Kdim M < Cdim M. |

ExampLE 59. Let us consider a simple case of Theorem 7.1. Let
A = B[t] where t isacentral variable of degree 1. Let R, be the balanced
dualizing complex of B. Then the balanced dualizing complex of A is
nothing but

R, = Rp &, Qi[t]/k[l] = Ry[t](—D)[1],

where O}, = klt]-dt = k[t](—1) as graded k[t]-modules. This follows
from [VdB, Theorem 7.1], which states that if B,C are noetherian con-
nected graded k-algebras with balanced dualizing complexes R, and R,
respectively, and if B ® C is noetherian, then R; ® R, is a balanced
dualizing complex over B ® C. By Theorem 5.1, A is graded Auslander
and Kdim (resp. GKdim)-Macaulay if and only if B is.

CoROLLARY 5.10. Let A be a connected graded k-algebra with a balanced
dualizing complex. Suppose that every graded prime quotient A /p satisfies one
of the following conditions:

(i) A/p is graded Auslander (resp. and graded Kdim (or GKdim)-
Macaulay); or

(i) A/p has a normal element of positive degree.
Then A is graded Auslander (resp. and graded Kdim (or GKdim)-Macaulay).

Proof. Use Proposition 4.18, Theorem 5.1, and induction on Kdim A.

Recall that A has enough normal elements if every graded prime
quotient A /p (except for p = m) contains a normal element of positive
degree. By Corollary 5.10, a noetherian connected graded algebra with
enough normal elements is Auslander and GKdim-Macaulay. In the rest of
this section we generalize this statement.

CoROLLARY 5.11. Let A and B be noetherian connected graded k-alge-
bras. Assume A has a balanced dualizing complex and is graded Auslander
(resp. and graded Kdim (or GKdim)-Macaulay), and B has enough normal
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elements. Then A ® B is a noetherian connected graded k-algebra with a
balanced dualizing complex, and it is graded Auslander (resp. and graded
Kdim (or GKdim)-Macaulay).

Proof. Wefirst provethat A ® B isnoetherian by induction on Kdim B.
Suppose {p,,...,p,} is the complete set of minimal graded primes of
B. Then some product ITi_,p, is zero. For any s>1 let W, :=
I1;-iv, /IT;_1p,, where W, = B/p, ,and let B, = B/p, . Since W, isa
finitely generated B,-module, 4 ® W, is a finitely generated A ® B,-
module. Hence it suffices to show that each 4 ® B, is noetherian. This
reduces to the case when B is prime. Hence we may assume B has a
regular normal element ¢ of positive degree. It is obviousthat 1 ® ¢ isa
regular normal element in 4 ® B. By induction hypothesis, 4 ® B/(¢) is
noetherian, and therefore 4 ® B is noetherian by [ATV, Theorem 8.2].

The graded Auslander and Macaulay properties follow from the same
inductive procedure and Theorem 5.1 |

In [SZ, Theorem 3.10] it was shown that a connected graded Pl algebra
of finite injective dimension (i.e., a Gorenstein algebra) is graded Auslan-
der—Gorenstein and graded GKdim-Macaulay. This was extended in [Zh]
to an algebra A4 having enough normal elements. Corollary 5.11 (when
A = k) generalizes these theorems by eliminating the Gorenstein condi-
tion. We extend the result further in Theorems 5.13 and 5.14 below.

DeriniTiON 5.12. Let R be a balanced dualizing complex over A.

(1) We say two graded A-modules M and N are similar if there
are isomorphisms M =N and RHomY(M, R) = RHom%(N,R) in
D(GrMod k).

(2) The algebra A satisfies the similar submodule condition if every
nonzero, m-torsion-free, finitely generated, graded A-module M has
graded submodules N’ ¢ N ¢ M with N’ similar to N(-I) for some
[>0.

We remark that two complexes M, N € D’;(GrMod A) are isomorphicin
D(GrMod k) if and only if they have equal Hilbert functions, namely
rank ,(H'M); = rank,,(H'N); for al i,j € Z. This definition of a similar
submodule condition is equivalent to the definition given in [Zh, Section 2]
when A is AS-Gorenstein, which is the case considered there. Also, as
mentioned in [Zh, Sect. 2] there are algebras which do not satisfy the
similar submodule condition.
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THEOREM 5.13. Assume A is a noetherian connected graded k-algebra
and satisfies one of the following:
(i) Aisa PI algebra.
(i) A is graded-FBN.
(iii) A has enough normal elements.

Then A has a balanced dualizing complex, and the similar submodule
condition holds.

Note that if A4 is Pl, then A is graded FBN and has enough normal
elements.

Proof. The existence of a balanced dualizing complex follows Theorem
4.6, together with [AZ, Theorems 8.8 and 8.13]. The statement about the
similar submodule condition is proved like in [Zh, Sect. 2, first paragraph,
and Proposition 2.3]. I

We now prove a generalized version of [Zh, Theorem 3.1].

THEOREM 5.14. Let A be a noetherian connected graded k-algebra which
has a balanced dualizing complex R and satisfies the similar submodule
condition. Then

(D A is graded Auslander.
(2) A is graded Kdim and GKdim-Macaulay. More precisely

Cdim, M = Kdim M = GKdim M

for every finitely generated left or right A-module M.

Proof.  First we observe that [Zh, Lemma 2.2] holds (same proof), and
hence Kdim M > GKdim M and GKdim M < o for every finitely gen-
erated graded A-module M. Therefore, replacing Ext'(—, 4) with
Ext,(—, R), the proof of [Zh, Theorem 3.1] can be copied verbatim. Let us
just mention the key point of the proof. We prove by induction on
GKdim M that for every finitely generated graded 4-module (resp. A°-
module) M:

(@ jr(M)= —GKdim M.

(b) GKdimExt/(M, R) = GKdim M, where j = j(M).

(¢) For every j.(M) <i < 0one has GKdimExt,,(M, R) < —i.
Thisimpliesthat A isgraded Auslander and graded GKdim-Macaulay. By

[Zh, Lemma 2.2], Kdim M > GKdim M = Cdim M, and by Theorem 4.14,
Kdim M < Cdim M. Hence A is graded Kdim-Macaulay. |
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Theorem 0.6 is an immediate consequence of Theorems 5.13 and 5.14.
Another consegquence is Proposition 0.9 which we now prove.

Proof of Proposition 0.9. If A is connected graded, i.e., A, =k, the
assertion follows from Theorems 5.13 and 5.14. Now assume A is not
connected. Let B =k + A . ,, which is connected. Since 4 and B differ
by a finite rank k-module, B is noetherian. It remains to verify the
following statements.

(@ If M isafinitely generated graded A-module, then Kdim, M =
Kdim,; M and GKdim, M = GKdim, M.

(b) If A has enough normal elements, then so does B.

(o) If A isgraded FBN, then sois B.

(@) The statement about GKdim is obvious because GKdim is deter-
mined by the degree of the Hilbert function of M (see [Zh, Lemma
2.2(1)]). Next we consider Kdim. Clearly Kdim, M = 0 if and only if M is
a finitely generated k-module, if and only if Kdimz M = 0. For higher
dimension we consider the quotient category QGr A := GrMod A4 /M,
where M, = My(Kdim) isthe localizing subcategory consisting of Kdim = 0
modules (torsion modules in the terminology of [AZ]). For any M
GrMod, A one has

Kdim, M = Kdimg,yeq 4 M = Kdimgg, ,M + 1.

Now since A and B differ by a finite rank k-module, QGr A4 is equivalent
to QGr B by [AZ, Proposition 2.5], so Kdimgg, 4 M = Kdimgg, 5 M.

(b) Let p be a graded prime ideal of B which isnot m, = B_,.
Then Ap A and p differ by a finitely generated k-module, and hence
GKdim A/Ap A = GKdim B/p. Let q be a graded prime of 4 minimal
over Ap A such that GKdim A/q = GKdim B/p. Then the map B/p —
A/q isinjective, and bijective in positive degrees. Thus normal elements of
positive degree in A /q are also normal elementsin B/p.

(c) The proof is similar to (b) and we leave it to the reader. |

6. NOETHERIAN CONNECTED FILTRATIONS

In this section we use filtrations to transfer results of Sections 4-5 on
connected graded algebras to non-graded algebras. Throughout the section
A denotes a noetherian k-algebra.

Suppose a k-module M is given an increasing filtration F = {F, M}, .,
with N,F,M =0 and U, F,M = M. The Rees module is the graded
k[¢]-module

Rees" M= @ F,M-t" c M[t,t7],

nez
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where ¢ is a central indeterminate. It is easy to check that
(Rees" M) /(t — 1) - (Rees" M) =M
and
(Rees"M) /t- (Rees" M) =grf M = & F,M/F,_,M.

ne’z

Now let F = {F,A},., be a filtration of 4 such that F,4-F,A C
F,.,,A. The graded k-algebra Rees” A is called the Rees algebra.

DerINITION 6.1. If the Rees algebra Rees” 4 is a noetherian con-
nected graded k-algebra then F is called a noetherian connected filtration.

Observe that Rees” A is connected graded iff F,4 =k, F_;A = 0, and
rank, F, A < «. If Rees” A is noetherian then so is the associated graded
algebra gr’ A. By [ATV, Theorem 8.2] the converse is also true—if gr 4
is noetherian then so is Rees’ A.

A filtration {F, A} on an A-module M with F,A-F,M C F,,, M dgives
a graded module Rees” M over Rees” A. We say {F, M} isa good filtration
if Rees” M is a finitely generated (Rees” 4)-module.

The main result of this section is the following theorem. Part (1) is due
to Van den Bergh [VdB, Theorem 8.6], but there was a subtle flaw in his

statement: the shift by —1 was missing.

_ THEOREM 6.2. Let F be a noetherian connected filtration on A and let
A = Rees’ A.

@ 1 A has a balanced dualizing complex R then
R:= (A& Re; A)[-1]
is a rigid dualizing complex over A.

(2) If R is graded Auslander then R is Auslander.

(3 Suppose R is graded Auslander. If R is graded GKdim-Macaulay
then R is GKdim-Macaulay.

The proof comes after this lemma. . . 5
Consider the functor = :GrMod k[¢] - Mod k, M — M/(t — DM.
Write A4, = A[t,t].

LEMMA 6.3. (1) The functor  is exact.
(2 IfI € GrMod A is injective then wI € Mod A is injective.
(3) There is a functorial isomorphism
RHomA(w]\7I,7rl\7) =7 RHom?{(l\Nl,]\N])
for M, N € D?(GrMod A).
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Proof. (1),(2) 7 is a composition of the functors “locaization by ¢”
(-), : GrMod A — GrMod A4, and *“taking degree O component”
(- )O GrMod 4, — Mod 4, both of which are exact. The second is even
an equivalence, so injectives go to_injectives. Since A, is noetherian a
standard argument shows that the A -module I is graded injective.

(3) There is a functorial morphism ¢ : 7 R Homgf(M N) -
R HomA(wM 7N). Fixing N these are way-out right contravariant func-
tors of M. By [RD, proposition 1.7.1(iv)]—reversed—it's enough to check
to that ¢ is an isomorphism when M = A4, and then it's trivial. |

Proof of Theorem 6.2. (1) By Proposition 4.8 and the graded version of
Corollary 3.6 each cohomology module H?R is k[¢]-central (cf. Remark 6.6
below). Define

R, =4, & Re; A, D(GrMod(4,)

We see that the homomorphisms /T, ®;z R - R and R ® 7 A, > R, are
quasi-isomorphisms.
Because 4 — A = wA isflat we also have

A® R[—1] = R[—1] & A4 = R € D(Mod A°).

Considering only A-modules we have R = wR[—1], so by Lemma 6.2, R
has finite injective dimension and finitely generated cohomologies over A.
By symmetry this is true also over 4°. Part (3) of the lemma implies that
RHom (R,R) = mA = A, and likewise RHom (R, R) = A. We con-
clude that R is dualizing. 5 5
Now let’sprove R isrigid. Thereisafunctorial isomorphism 7M = (M,),
for M € GrMod k[¢], and the algebra A° is Z?-graded. Therefore we get

A (ReR)= (A8 R)® (Re; 4) = (R,), ® (R,),
= (R &R/,

The algebra (/I[)" is strongly Z-graded, and its degree O component is
(/T,)Z = As,s ] = k[s,s7 1] ® A°,

where s :==t ® ¢t 1. Applying (/I,)e ®; — to

R = RHom%(A4,R & R)
we obtain

~

R, = RHom% (4, R, @ R,|
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and taking degree O components we get
R[1] = RHom¢%; (A, (R, & R,) |
= RHomy, ;1.4:(A4, k[s,s7'] ® (R[1] ® R[1])).
But
k= (k[s,s '] <=5 k[s,s *]) € D(Mod k[s, s 1]),
and A is afinitely presented A°-module, so
RHom,, ;10 4(k ® A, k[s,s7'] ® M) = RHom (A4, M)[ —1]

for any complex of A°-modules M.

(2) Let M be a t-torsion-free finitely generated graded A4-module.
We claim that

Jroa(mM) =jg. M + 1. (6.4)
First by Lemma 6.3 we get for any ¢,
Ext;9*Y(wM, R) = 7w Ext;'(M, R), (6.5)

SO A(7r]\7[)>jR AJ\7I+ 1. Now take ¢ = —jz. sM and write N :=
Ext79(M, R). If =N = 0 then ¢'N = 0 for some [ > 0. But in the Ext
spectral sequence converglng to M (see proof of Theorem 2.10) the
dominant term is Ext3¢(N, R) which is killed by . We get Cdimj t'M <

Cdimz M = g, which ‘is absurd since ¢/i7 = M(—-D).

Given finitely generated A-modules M C N, take any good filtration
{F,N}, and let F,M=MnNF,N, M= Rees’ M, and N = Rees’ N.
Since M and N are ¢-torsion-free we see that

Cdimp, M = Cdim,g -1< Cd|mR —1=Cdim; N

Finaly let L := Ext,9(M, R). Then, with M = Rees" M and L =
Ext$ (M, R), we see that jroaL =iz ;L + 1> —q, verifying the Aus-
Iander condition on one side. By symmetry it holds also on the other side.

(3) By the proof of part (2), given a finitely generated 4-module M
one has Cdimg,. , M + 1= Cdimz ; M with M = Rees" M w.rt. any
good filtration {F, M}. But because M, = M ® k[t,t '] we also have

GKdim, M + 1 = GKdim; M, = GKdim; M
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Remark 6.6. It isnot too hard to show that R could be chosen to be a
k[t]-central complex of graded A4-bimodules.

Observe that the rigid dualizing complex R has HYR = 0 for g > O,
since HOR is t-torsion and HYR = 0 for ¢ > 0.

COROLLARY 6.7. Suppose A is connected graded and R is a balanced
dualizing complex over A. Then R is a rigid dualizing complex over A in the
ungraded sense.

Proof. First let us note that for any graded A-module M we can define
a filtration F,M = &®,_ M, Then we have a functorial isomorphism of
graded A[¢]-modules Rees” M — M[t]. B

In particular we get 4 = A[¢], so by Example 5.9 we know that R =
R[¢](—DI1] is the balanced dualizing complex of A. But then wR[—1] =
7R[t}(—1) = R in D(Mod A4°), and this is rigid by Theorem 6.2(1). |

The next corollary implies Theorem 0.7.
COROLLARY 6.8.  Suppose A has a noetherian connected filtration F, and
let A= grf A.
(1) If A has a balanced dualizing complex R, then A has a rigid
dualizing complex R.
(2) If R is graded Auslander then R is Auslander.
(3) IfR is also graded GKdim-Macaulay, then R is GKdim-Macaulay.

Proof. According to Theorem 5.1, the Rees algebra A = Rees’ A
inherits these properties from A. And by Theorem 6.2 they passto 4. |

__COROLLARY 6.9.  Suppose A has a noetherian connected filtration F, and
A = grf' A satisfies either of the following:
(i) Ais a PI algebra.
(i) A is graded-FBN.
(iii) A has enough normal elements.
Then A has an Auslander, GKdim-Macaulay, rigid dualizing complex.
Proof. Combine Corollary 6.8 and Theorems 5.13 and 5.14. |

Here are some examples of algebras which admit noetherian connected
filtrations.

ExampLE 6.10. If A is a noetherian connected graded algebra, then
the filtration F, 4 = &, _ A, isa noetherian connected filtration.

1<n

ExampLE 6.11. Suppose A is generated by elements x,, ..., x,, and for
every i # j there is some relation

XX, =q; XX +a; x; + bw-xj +¢ (6.12)
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with g; ;,a; ;,b; ;. ¢; ; € k.Let V =k + Lk -x; € A and define afiltration
F,A:=V". Then gr A is a quotient of the skew polynomia algebra
k,lx...,x,], so F is a noetherian connected filtration. Furthermore,
gr’ A has enough normal elements (namely the x;); so Corollary 6.9 holds.
It is easy to check that the relations (6.11) are satisfied in the following

classes of algebras:

(i) Commutative affine algebras.

(ii) Weyl algebras, enveloping algebras of finite dimensional Lie
algebras and their quotients.

(iii) Most classes of quantum algebras listed in [GL].

Recall that a homomorphism f: A — B is called finite if B is a finite
left and right A-module. f is centralizing if B =A-Zz(A). Thus f is
finite centralizing iff there exist b,,...,b,, € Z,(A) suchthat B = ¥ A - b,.

LEMMA 6.13. Suppose f: A — B is a finite centralizing homomorphism
and F is a noetherian connected filtration on A. Then there is a noetherian
connected filtration F on B such that f preserves the filtrations and
Rees’(f):Rees’ 4 — Rees’ B is finite.

Proof. Let by,...,b, be elements of B which commute with 4 and
B =1YA-b;. Choose elements a; ;;, € A such that b;b;, = ¥,a, ; ,b,. Let
ny > 0 be large enough such that a, ; , are in F, A. Define

F,B=F,A 1+ } F,_, A-b CB.
i

Clearly this is a connected filtration. Since the elements (1, 5,...,b,,)
determine a surjective bimodule homomorphism

Rees” A ® (Rees’ 4)"(—n,) » Rees" B

we see that Rees” B is noetherian. ||

ExampLE 6.14. If A is an affine k-algebra finite over its center, then
there is a finite centralizing homomorphism k[¢,...,t,] > A from a
commutative polynomial algebra. By the lemma and Example 6.10, 4 has
a noetherian connected filtration. Thus A satisfies the assumptions of
Corollary 6.9.

ExampPLE 6.15. Here is an example of a prime Pl algebra A which is
not finite over its center yet has a noetherian connected filtration
(Schelter’s Example, [Ro, p. 492, Exercise 27]). Let ¢, A, A, be commuting
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indeterminates of degree 1. Define
5 = @[ﬁa\/ga )\11 /\zat]

Gy = Q[V6,0/Z + Ay, Ay, A2 1]
Cy= QB 1/3 + Ay, A, An/2 1]

Then A4 isa noetherian graded algebra and /IO is finite over k == Q. The
quotient 4 == A /(¢ — 1) acquires afiltration {F, A}, and if we modify it by
setting F, A = Q this becomes a connected filtration. But A4 is not finite
over its center.

QUESTION 6.16. Does every noetherian affine Pl k-algebra admit a
noetherian connected filtration? This seems to be a hard question. A similar
one was posed by M. Lorenz over ten years ago (see [Lo, p. 436)).

In Section 3 we found that rigid dualizing complexes are sometimes
functorial w.r.t. finite algebra homomorphisms, via the trace morphism.
Here is such an instance:

THEOREM 6.17. Let A — B be a finite centralizing homomorphism. Sup-
pose A has a noetherian connected filtration F and grf A has a balanced
dualizing complex. Then A and B have rigid dualizing complexes R, and Ry,
respectively, and the trace morphism Try, Ry = R, of Definition 3.7
exists.

Proof. By Lemma 6.13 we get a finite homomorphism of graded alge-
bras A = Rees’ A - B = Rees’ B. So according to Theorem 4.16 the
trace morphism Trz 5 : Rz — R 7 exists. Now apply the functor 7 and use
Theorem 6.2. |

For applications of this result see Proposition 3.9.

Let o be a k-algebra automorphism A. Recall that A7 isthe invertible
bimodule with basis e satisfying ¢ -a = o(a) - e. A noetherian connected
graded k-algebra B is called AS-Gorenstein if B satisfies y and the
bimodule B has finite injective dimension on both sides. Here AS stands
for Artin—Schelter. We say B is AS-regular if B is AS-Gorenstein and dl.
dim B < oo,
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ProposITION 6.18.  Suppose A has a noetherian connected filtration F and
grf A is AS-Gorenstein (resp. AS-regular). Then the following statements
hold.

(D A is a Gorenstein (resp. regular) algebra.

(2) The rigid dualizing complex of A is R = A”[n] where n is an integer
and o is some k-algebra automorphism of A.

(3 If grf A is graded Auslander (resp. and graded GKdim-Macaulay),
then A is Auslander—Gorenstein (resp. and Cohen—Macaulay) in the sense of
[Bjl.

(4) Let B=A/a be any quotient algebra, M any B-module, and q an
integer. Then the twisted module ExtY(M, A)” is a B°-module.

_Proof. (1),(2) Let n be the injective dimension of gr’ A, and_let
A = Rees" 4. By [Lev, Theorem 3.6] the injective dimension of A is
n + 1. Since A satisfies x it is AS-Gorenstein. So the balanced dualizing
complex of A is R = A%(d)[n + 1] for some graded automorphism & and
for some integer d. By Theorem 6.2 the rigid dualizing complex of A is
R = wA%[n]. Since A7 = H™" 'R thisis k[t]-central; so &(¢) = t. We see
there is an induced automorphism o of 4 and R = 4°[n].
If gr A has finite global dimension, then so does A.

(3) This follows from (2) and Theorems 5.1 and 6.2.
(4) 1t follows from Theorem 6.17 and Proposition 3.9(1) that

Extq(M, A)” = Ext4 "(M, A”[n]) = Ext} "(M,R) = Ext} "(M,R,),

where R isthe rigid dualizing complex of B. |

Example 2.3 shows that Proposition 6.18 (2), (3) might fail even if A4 is
Gorenstein. The next example shows that ¢ could be nontrivial.

ExamMPLE 6.19. Let A be the quantum plane k [x, y] = k{x,y)/(yx
— qxy) for g € k* with g? # 1. The automorphism o in Proposition
6.18(4) is o(x) = gx, o(y) =q 'y (cf. [Yel, Examples 6.21 and 7.14]).
Consider theideal I = A -f- A where f:=x — y, which is not normal. An
easy computation showsthat B = k[e]with €2 = 0,and e = x = y (mod ).
Now consider the graded 4°-module N = Ext2(B, A). One has N7 (—2)
= B* as A°modules, so N is killed by gx — g™y = o(f) € A4°, and
hence N cannot be a B°-module.

ExamMPLE 6.20. Let A be the Weyl algebra k{x,y)/(xy —yx — D).
Take the standard filtration F, A = (k + kx + ky)". Then the Rees alge-
bra A is generated by x,y,t with ¢ central and xy —yx = t% A is an
Artin—Schelter regular algebra of global dimension 3, so its balanced
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dualizing complex is A7(—23)[3] for some automorphism &. Let B ==
A /(t?), which is a commutative AS-Gorenstein algebra. As in [Yel,
Theorem 7.18] we find that o = 1. Therefore the rigid dualizing complex
of A is A[2]. Observe that Cdim A = 2 = GKdim A. In [Ye4] we prove
the more general statement that if C is any smooth integral commutative
k-algebra of dimension n, chark =0, and A4 :=2(C) is the ring of
differential operators, then the rigid dualizing complex of A4 is A[2n].

Suppose A4 has a noetherian connected filtration F. A two-sided good
filtration on a bimodule M is a filtration {F, M} such that F,A-F, M C
F,.,.M, FM-F,ACF,,,M and Rees" M is a finitely generated

(Rees” A)-module on bhoth sides.

ProposITION 6.21.  Assume A has a noetherian connected filtration and
gr A has a balanced dualizing complex. Let R be the rigid dualizing complex
of A. If a bimodule M has a two-sided good filtration then

RHom, (M,R) = RHom (M, R).

Proof. Let M = Rees" M. According to Corollary 4.17 there is an
isomorphism

RHom3(M, R) = RHom (M, R)

in D(GrMod A°), where R is the balanced dualizing complex of A. Since
M is k[t]-central we can apply the functor 7. |

Recall the notion of weakly symmetric dimension function (Definition
2.20).

COROLLARY 6.22. Assume A has an Auslander rigid dualizing complex,
and a noetherian connected filtration such that gr A has a balanced dualizing
complex. Then Cdim is weakly symmetric.

Proof. Ascan be readily verified, the class of A4-bimodules which admit
two-sided good filtrations is closed under submodules, quotients, and finite
direct sums. Given a bimodule M which is a subquotient of 4, Proposition
6.21 applies and hence Cdim, M = Cdim . M. |

We can now give the

Proof of Theorem 0.1. By Corollary 6.9, A has an Auslander rigid
dualizing complex R, and by Corollary 6.22, Cdim, is weakly symmetric
(this also follows from the GKdim-Macaulay property). Now use Theorem
223. 1
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The next theorem has the same conclusions as [ASZ, Theorem 6.1], but
our assumptions are much more focused. Let n be the prime radical of A.
Recall that n is said to be weakly invariant w.r.t. an exact dimension
function dimif dmn ®, M < dim A/n = dim A for every finitely gener-
ated A-module M with dim M < dim A (and the same for right modules);
cf. [MR, 6.8.13]. A ring is called quasi-Frobenius if it is artinian and self
injective.

THEOREM 6.23. Let A be an Auslander—Gorenstein noetherian k-algebra
of injective dimension n. Assume A has a filtration such that gr A is an
AS-Gorenstein noetherian connected graded k-algebra. Then

(1) The prime radical n is weakly invariant.
(2) If v is a minimal prime then Cdim A/p = n.
(3 A has a quasi-Frobenius ring of fractions.

Proof. By Proposition 6.18 the rigid dualizing complex of A4 is R =
A’[n]. According to Corollary 6.22, Cdimy is weakly symmetric. Now the
function denoted & in [ASZ, Theorem 6.1] coincides with Cdimy, so all
assumptions of that theorem hold. |

The next theorem is due to Gabber in the case when gr 4 is Ausland-
er—Gorenstein, and an elegant proof was communicated to us by Van den
Bergh. We extend the result by dropping the Gorenstein condition.

THEOREM 6.24. Let A be a filtered k-algebra such that gr A is a noethe-
rian connected graded k-algebra with graded Auslander balanced dualizing
complex. Given a Cdim-pure A-module M, there is a good filtration {F,, M} on
it such that gr” M is Cdim-pure.

Proof. The basic idea is to start with an arbitrary good filtration on M
and to modify it to get purity.

Let A be the Rees algebra of A4, and let R be its balanced dualizing
complex. So R has the graded Auslander property.

Let n = CdlmM+ 1. Choose any good filtration F' on M and let
M= Rees”’ M. SmceM is r-torsion-free and M = =M, by (6.4) we have
Cdim M=nIf M cMis any nonzero graded submodule then because
7M' c M, and because M is pure, we see that Cdim M’ = n. Thus M is
pure.

Set

E(M) = Ext'(Ext;"(M, R), R).
Asin Theorem 2.14(3) there is an exact sequence

0—M— (EM) - Q — 0, (6.25)
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where Cdim Q < n — 2. Consider the module N which is the ¢-saturation
of M in E(M),i.e,

N = {x € E(M)l|t'x € M for some i > 0}.

Since ﬁ/]\71 is t-torsion it follows that M = 7M — 7N is bijective; but
the filtration F on 7N may be different from F’. Observe that N is
t-torsion-free, so by lifting back the filtration we obtain N = Rees” 7TN
By (6.25) we get Cdim N/M < n — 2, which impliesthat E(M) — E(N) is
bijective. Therefore by changing the good filtration on M from F' to F,
we can assume that in (6.25) the module Q is t-torsion-free.

Having done so we get a short exact sequence

0 moM — WOE(J\7I) - 7,0 = 0,

where m, denotes the functor M — M /tM. Hence in order to prove that
grM = 7T0M is pure it suffices to prove that wOE(M) is pure. Now, using
the duality functor D = RHom%(—, R) we have L = Ext7"(M,R) =
H™"DM, which is t-torsion-free by Lemma 5.4. Therefore by the same
lemma, Cdim 7, = n — 1. Now E(M) = H™"D°L, and by formula (5.5)
when i = —n we get

o H"D°L ¢ (H """ YD°m,L)(—1).

But by Theorem 2.14, the module H~"~YD°# L is pure of dimension
n—1 1

If gr A is a commutative affine k-algebra and M is a finitely generated
A-module, define I(M) c gr 4 to be the prime radica of Ann, , oM
for some good filtration F on M. By [MR, Proposition 8.6.17], I(M) is
independent of the choice of good filtration. The characteristic variety of M
is defined to be

Ch(M) = Specgr A/I(M)

(cf. [Co, p. 98] for the case when A is a Weyl algebra).

Proof of Theorem 0.4. Recall that a variety is called pure if all its
irreducible components have the same dimension. The support of a Kdim-
pure finitely generated module N over a commutative affine k-algebra B
is pure. But for a commutative algebra Kdim, = GKdim,z = Cdimy. Here
wetake B :==grA and N == gr M.
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