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0. INTRODUCTION

Dualizing complexes play an essential role in the Serre]Grothendieck
Ž w x.Duality Theory on schemes see RD . The duality formalism was general-

ized to noncommutative rings by the first author, in order to answer some
questions which arose in this context, mainly regarding local duality for

Ž w x.noncommutative graded algebras see Ye1 . A version of Serre duality for
noncommutative projective schemes was established using dualizing com-

Ž w x w x.plexes see Jørgensen Jo2 and our YZ1 . Dualizing complexes, and more
generally derived categories, are powerful tools for proving abstract prop-
erties of noncommutative rings. For examples, consider the noncommuta-
tive graded versions of the Auslander]Buchsbaum Theorem, The Bass

Ž wTheorem, and the No-Holes Theorem for Bass numbers see Jo1, Theo-
x.rems 3.2, 4.5, 4.6, and 4.8 . Under the synonym ‘‘cotilting complexes,’’

w xdualizing complexes were studied by Miyachi Mi2 . Cotilting bimodules
occur often in papers on representations of finite-dimensional algebras, cf.
w xHa .

In this paper we will provide further evidence that the dualizing complex
Ž .Definition 1.1 is an effective tool for studying noncommutative rings. We
are especially interested in those dualizing complexes which satisfy an

Ž .extra homological condition called the Auslander property Definition 2.1 .
The basic idea here is that if a statement holds for Auslander]Gorenstein

w xrings in the sense of Bj , then an appropriate version of the statement
should hold for rings with Auslander dualizing complexes. The Gorenstein
condition, i.e., the ring itself having finite injective dimension, is consid-
ered to be very restrictive; in contrast, having an Auslander dualizing
complex is considered to be a mild condition.

There are a few ways to show existence of Auslander dualizing com-
Ž .plexes. For example, if A is a connected graded algebra over a field k

with enough normal elements, then A has an Auslander dualizing com-
plex. Recall that a connected graded k-algebra A has enough normal

elements if every graded prime factor Arp / k has a nonzero normal
element of positive degree. This class of rings has been studied recently by
many algebraists, because of developments in quantum groups and non-
commutative algebraic geometry.

In this paper we prove a diverse collection of results, whose common
thread is that their proofs are based on the existence of an Auslander
dualizing complex. Throughout k denotes a fixed base field, and a k-alge-
bra means an associative algebra with 1.

w xFirst we generalize GL, Theorem 1.6 by dropping the Gorenstein
condition. Note that the hypothesis on gr A in the next theorem is easy to

Ž .check in practice see Example 6.11 , and we suspect it can even be
weakened.
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THEOREM 0.1. Assume A is a normally separated filtered k-algebra such

that gr A is a noetherian connected graded k-algebra with enough normal

elements. Then Spec A is catenary.

This is proved after Corollary 6.22.
w xWe generalize some results in ASZ , two of which are:

THEOREM 0.2. Assume A is a noetherian k-algebra with an Auslander

dualizing complex. Then there is a step duality between the category Mod Af

of finitely generated left A-modules and the category Mod A8 of finitelyf

generated right A-modules.

Actually we prove a more general result involving two algebras}see
Theorem 2.15. It follows that if the algebra A has an Auslander dualizing
complex then the left and right Krull dimensions of A are finite.

THEOREM 0.3. Let A be an Auslander]Gorenstein noetherian k-algebra.
Assume A has a filtration such that gr A is an AS-Gorenstein noetherian

Ž .connected graded k-algebra e.g., if A is connected graded . Then A has an

artinian self-injectï e ring of fractions.

For more details see Theorem 6.23.
The notion of characteristic variety Ch M of a module M was intro-

Ž w x.duced in DD-module theory cf. Co, p. 98 . The next theorem generalizes a
result of Gabber by dropping the Gorenstein condition. The possibility of
making this generalization was suggested by Van den Bergh.

Ž .THEOREM 0.4 Purity of Characteristic Variety . Assume A is a filtered

k-algebra such that gr A is a commutatï e connected graded affine k-algebra.
If M is a finitely generated GKdim-pure left A-module, then the characteristic

¨ariety Ch M is pure.

Given an algebra A there might exist non-isomorphic Auslander dualiz-
Ž Ž .. Žing complexes over it see Example 2.3 c . For various reasons like

.functoriality it is desirable to find dualizing complexes which are canoni-
cal in some sense. In the graded case, the balanced dualizing complex
Ž . w xDefinition 4.2 , introduced by the first author in Ye1 , is a natural choice.
In the upgraded case, one should consider the rigid dualizing complex
Ž . w xDefinition 3.1 introduced by Van den Bergh VdB . Rigid dualizing

Ž .complexes and balanced dualizing complexes in the graded case are
uniquely determined up to a unique isomorphism. A balanced dualizing

Ž w Ž .xcomplex is always rigid see VdB, Proposition 8.2 2 and our Corollary
.6.7 . The next theorem on the functoriality of rigid dualizing complexes is a

combination of Theorem 3.2 and Corollary 3.4. A homomorphism A ª B

of algebras is called finite if B is a finitely generated left and right
A-module.
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THEOREM 0.5. Let A be a noetherian k-algebra. A rigid dualizing complex

R o¨er A is unique up to a unique isomorphism. If A ª B is a finiteA

homomorphism and R , R are rigid dualizing complexes o¨er A, B, respec-A B

tï ely, then there is at most one morphism Tr : R ª R compatible withBr A B A

the rigidity.

The existence of a dualizing complex is not automatic. A very effective
wcriterion for existence of balanced complexes is given in VdB, Theorem

x Ž .6.3 which is Theorem 4.6 here . Van den Bergh’s idea was to first prove
the Local Duality Theorem, and then to show this duality is represented by
a balanced dualizing complex. The Rees algebra allows us to transfer

Ž .results on graded algebras to non-graded algebras see Theorem 6.2 .
We prove that Auslander rigid dualizing complexes exist for a large class

Žof rings. First, the similar submodule condition on graded A-modules see
.Definition 5.12 enables induction on GKdim. Combining Theorems 5.13

and 5.14 we get:

THEOREM 0.6. Assume A is a noetherian connected graded k-algebra

which has a balanced dualizing complex R and satisfies the similar submodule
Ž .condition e.g., A is FBN or has enough normal elements . Then the balanced

dualizing complex R is graded Auslander.

Next, Theorem 6.2 says:

THEOREM 0.7. Suppose A is a filtered k-algebra such that the associated

graded algebra gr A is noetherian. If gr A has a graded Auslander balanced

dualizing complex, then A has an Auslander rigid dualizing complex.

By results of Grothendieck, a commutative affine connected graded
Žk-algebra has a graded Auslander balanced dualizing complex this also

.follows from Theorem 0.6 . Since factor rings of universal enveloping
algebras of finite dimensional Lie algebras are filtered, and their associ-
ated graded algebras are commutative, Theorem 0.7 tells us that these
algebras have Auslander rigid dualizing complexes. In the same way we
may use Theorems 0.7 and 0.6 to show that many quantum algebras and
their factor algebras have Auslander rigid dualizing complexes. A key step

Žin the proof of Theorem 0.7 is the following theorem see Theorem 5.1 for
.full details and proof .

THEOREM 0.8. Let A be a noetherian connected graded k-algebra. Sup-
pose t g A is a nonzero homogeneous normal element of positï e degree. Then

A has a graded Auslander balanced dualizing complex if and only if so does
Ž .Ar t .

w x w Ž .xAs noted on Zh, p. 399 , the proof of SZ, Lemma 6.1 ii has a gap, and
Ž . wan alternative proof of the result under extra hypotheses is given in Zh,
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x w Ž .xTheorem 3.1 . We now give a complete proof of SZ, Lemma 6.1 ii using
Ž .Auslander dualizing complexes the proof is at the end of Section 5 .

PROPOSITION 0.9. Let A be a noetherian locally finite N-graded k-algebra.
If A is graded FBN, or A has enough normal elements, then GKdim
M s Kdim M g N for e¨ery finitely generated left or right graded A-module

M.

Here are some other results we prove:

Ž . Ž .1 Gabber’s Maximality Principle Theorem 2.19 .
Ž . Ž .2 Existence of double-Ext spectral sequence Proposition 1.7 .

Ž .3 The existence of an Auslander rigid dualizing complex is trans-
Žferred to related algebras Propositions 4.18 and 4.20, Corollaries 4.17,

.5.10, and 5.11 .

The canonical dimension, denoted by Cdim, is defined when A has an
Ž .Auslander dualizing complex Definition 2.9 . It is an exact finitely parti-

Ž .tive dimension function Theorem 2.10 . Local duality implies that the
Ž .canonical dimension is symmetric in the graded case Proposition 4.13 .

Therefore if A is a connected graded algebra with an Auslander balanced
dualizing complex, the canonical dimension Cdim is exact, finitely parti-
tive, and symmetric on graded modules. Note that the Krull dimension,
denoted by Kdim, is exact and finitely partitive, but it is unknown whether
it is symmetric. On the other hand the Gelfand]Kirillov dimension,
denoted by GKdim, is symmetric, but neither exact nor finitely partitive in
general. Hence the canonical dimension is the better dimension function
}at least in the graded or filtered case.

The study of dualizing complexes over noncommutative rings presents
many interesting and subtle questions. We conclude the introduction by
mentioning two of them:

Ž . Ž .QUESTION 0.10. Which noetherian, affine k-algebras ha¨e rigid dual-
izing complexes?

QUESTION 0.11. Is a rigid dualizing complex always Auslander?

1. DUALIZING COMPLEXES

Let k be a field and let A be an associative k-algebra with 1. All
A-modules will be by default left modules, and we denote by Mod A the
category of left A-modules. Let AT be the opposite algebra, and let
Ae [ A m AT where ms m . Thus an Ae-module M is, in the conven-k

tional notation, an A-A-bimodule M central over k. Most of ourA A
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definitions and results have a left]right symmetry, expressible by the
exchange of A l AT. Since these symmetries are evident we shall usually
not mention them.

( .Let D Mod A be the derived category of A-modules, and let
wŽ .D Mod A , for w s b, q, y, or blank, be the full subcategories of

bounded, bounded below, bounded above, or unbounded complexes, re-
w xspectively RD .

Ž T .Given another k-algebra B, the forgetful functor Mod A m B ª

wŽ Ž T ..Mod A is exact, and so induces a functor D Mod A m B ª

wŽ . TD Mod A . Now A m B is a projective A-module, so any projective
Ž . Ž T . Ž .resp. flat, injective A m B -module is projective resp. flat, injective
over A.

Ž Ž T ..Consider k-algebras A, B, C. For complexes M g D Mod A m B and
Ž Ž T .. y qN g D Mod A m C , with either M g D or N g D , there is a derived

functor

R Hom M , N g D Mod B m CT .Ž . Ž .Ž .A

yŽ ŽIt is calculated by replacing M with an isomorphic complex in D Mod A
T ..mB which consists of projective modules over A, or by replacing N

qŽ Ž T ..with an isomorphic complex in D Mod A m C which consists of injec-
w xtive modules over A. For full details see RD, Ye1 . Note that for modules

M and N, viewed as complexes concentrated in degree 0, one has

H q R Hom M , N s Ext q M , N ,Ž . Ž .A A

the latter being the usual Ext.
Ž T .Because the forgetful functors Mod A m B ª Mod A, etc., commute

Ž .with R Hom y, y there is no need to mention them explicitly.A
qŽ .A complex N g D Mod A is said to have finite injective dimension if

q Ž .there is an integer q with Ext M, N s 0 for all q ) q and M g Mod A.0 A 0

For the rest of this section A denotes a left noetherian k-algebra and B
Ždenotes a right noetherian k-algebra. For instance we could take A s B a

. Ttwo-sided noetherian algebra. Observe that the algebra A m B need not
be left noetherian.

The subcategory Mod A of finitely generated A-modules is abelian andf

closed under extensions. Hence there is a full triangulated subcategory
Ž . Ž .D Mod A ; D Mod A consisting of all complexes with finitely gener-f

ated cohomologies.
w xDualizing complexes over commutative rings were introduced in RD .

w xThe noncommutative graded version first appeared in Ye1 , and we now
give a slightly more general version.
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DEFINITION 1.1. Assume A and B are k-algebras, with A left noethe-
bŽ Ž T ..rian and B right noetherian. A complex R g D Mod A m B is called a

dualizing complex if it satisfies the three conditions below:

Ž . Ti R has finite injective dimension over A and B .
Ž . Tii R has finitely generated cohomology modules over A and B .

Ž . Ž . Ž e.iii The canonical morphisms B ª R Hom R, R in D Mod B ,A

Ž . Ž e.Tand A ª R Hom R, R in D Mod A , are both isomorphisms.B

In case A s B, we shall say that R is a dualizing complex over A.

Ž .Condition i is equivalent to having an isomorphism R ( I g
bŽ T . q TD Mod A m B , where each I is injective over A and over B .

EXAMPLE 1.2. Suppose A is commutative and R is a dualizing complex
w xin the sense of RD . If we consider R as a complex of bimodules, by

identifying A s AT , then R is a dualizing complex in the sense of the
w xdefinition above. According to Ye3 , if Spec A is connected, then any

X w xdualizing complex R over A is isomorphic to R m P n , where P is anA

Ž .invertible bimodule not necessarily central! and n g Z.

Some easy examples of dualizing complexes over noncommutative rings
are given in Example 2.3.

The next proposition offers an explanation of the name ‘‘dualizing
complex.’’ The duality functors associated to R are the contravariant
functors

D [ R Hom y, R : D Mod A ª D Mod BTŽ . Ž . Ž .A

DT
[ R Hom T y, R : D Mod BT

ª D Mod A .Ž . Ž . Ž .B

( Ž T ..PROPOSITION 1.3. Let R g D Mod A m B be a dualizing complex.

Ž . Ž . Ž T .1 For any M g D Mod A one has DM g D Mod B and M (f f

DT DM.

Ž . T2 The functors D and D determine a duality, i.e., an anti-equï -
Ž . Ž T .alence, of triangulated categories between D Mod A and D Mod B ,f f

bŽ . bŽ T .restricting to a duality between D Mod A and D Mod B .f f

Ž . w xProof. 1 This is slightly stronger than Ye1, Lemma 3.5 . By adjunc-
tion we get a functorial morphism M ª DT DM. Since the functor DT D is
way out in both directions and DT DA ( A by assumption, the claim

w xfollows from the reversed forms of RD, Propositions I.7.1 and I.7.3 .

Ž . Ž .2 This is immediate from part 1 , together with the fact that
Tb bŽ . Ž .M g D Mod A implies DM gg D Mod B .
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Remark 1.4. The noetherian hypothesis can be relaxes}dualizing com-
Ž w x.plexes can be defined over any coherent algebra A see Ye1, Mi1 . The

category of finitely generated A-modules is then replaced by the category
of coherent modules. Many definitions and results in our paper hold for
coherent algebras, as can be easily checked.

Perhaps one can even work over an arbitrary algebra, using the category
Ž w x.of coherent complexes, as defined by Illusie see SGA6, Expose I .´

Another direction to extend the theory is to allow k to be any commuta-
tive ring. In this case the derived category of bimodules should be
Ž Ž L T .. L TD DGMod A m B , where A m B is a differential graded algebra.k k

w xSee Ye3, Remark 1.12 .

Ž .Remark 1.5. Miyachi proved a converse to Proposition 1.3 2 : if there
Ž . Ž T .are contravariant triangle functors D Mod A ª D Mod B and

Ž T . Ž . bD Mod B ª D Mod A which send [ to Ł, preserve D , and induce
b Ž Ž T .. Žduality on D , then there is a dualizing complex in D Mod A m B seef

w x.Mi2, Theorem 3.3 .

Remark 1.6. There are examples of algebras A and B where there is a
Ž Ž T ..dualizing complex R g D Mod A m B , but there is no dualizing com-

Ž e. w xplex in D Mod A ; cf. WZ . The algebras A and B are necessarily not
Ž Žderived Morita equivalent, since given a tilting complex T g D Mod B m

T .. L Ž e. Ž w x.A , the complex R m T g D Mod A would be dualizing cf. Ye3 .B

There are Grothendieck spectral sequences for the isomorphism of
functors 1 b ( DT D and 1 b T ( DDT. For modules they takeD ŽMod A. D ŽMod B .f f

this form:

Ž Ž T ..PROPOSITION 1.7. Let R g D Mod A m B be a dualizing complex.
Then three are con¨ergent double-Ext spectral sequences

E p , q [ Ext p
T Extyq M , R , R « M 1.8Ž . Ž .Ž .2 B A

for all M g Mod A, andf

E p , q [ Ext p Extyq
T N , R , R « N 1.9Ž . Ž .Ž .2 A B

for all N g Mod BT.f

Ž .Proof. By symmetry it suffices to consider 1.8 only. We can assume R

is a bounded complex of bimodules with each Rq an injective module over
A and BT. Given a nonzero finitely generated A-module M, define the
complex

H [ Hom T Hom M , R , R .Ž .Ž .B A

Then the adjunction homomorphism M ª H is a quasi-isomorphism. Pick
q < <a positive integer d large enough so that R s 0 if q ) d. Consider the
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decreasing filtration on H given by the subcomplexes

F pH [ Hom T Hom M , R , RG p .Ž .Ž .B A

Then F is an exhaustive filtration, and it determines the convergent
Ž .spectral sequence 1.8 .

qŽ .Given M g D Mod A , there is a quasi-isomorphism M ª I in
qŽ . q Ž q qq1. qD Mod A , where each I is injective and Ker I ª I ; I is essen-

Ž .tial. Such I is unique up to a non-unique isomorphism , and it is called
Ž w x.the minimal injectï e resolution of M cf. Ye1, Lemma 4.2 . If M has

finite injective dimension then I is bounded.
wThe next two results are straightforward generalizations of ASZ, Lemma

x2.2 and Theorem 2.3 , so the proofs are omitted.

Ž Ž T ..LEMMA 1.10. Let R g D Mod A m B be a dualizing complex, and let
bŽ . Ž iI be the minimal injectï e resolution of R in D Mod A . Let Z [ Ker I ªi

iq1.I and let M be a finitely generated left A-module. Then there exist
Ž . Ž .f , . . . , f g Hom M, Z such that for e¨ery N ; F Ker f the natural1 n i j j

i Ž . i Ž .map Ext M, R ª Ext N, R is zero; or equï alently, the natural mapA A
i Ž . i Ž .Ext MrN, R ª Ext M, R is surjectï e.A A

Ž Ž T ..THEOREM 1.11. Let R g D Mod A m B be a dualizing complex, let I
bŽ . Ž ibe the minimal injectï e resolution of R in D Mod A , and let Z [ Ker Ii

iq1.ª I . Then:

Ž .1 For e¨ery nonzero A-module M there is a nonzero submodule

N ; M which embeds in some Z .i
Ž .2 E¨ery indecomposable injectï e A-module appears in I.

We conclude this section with a discussion of dualizing complexes in
Ž Ž T ..D Mod A m B when A is commutative. For a prime ideal p ; A let
Ž .J p be an injective hull of Arp. Let us recall a result of Grothendieck.A

w xPROPOSITION 1.12 RD, Proposition V.7.3 . Suppose A is a commutatï e
bŽ . Ž .noetherian ring and R g D Mod A is a central dualizing complex. Let If

be the minimal injectï e resolution of R in Mod A.

Ž .1 There is a function d : Spec A ª Z such that

I q ( J p .Ž .[ A
Ž .d p sq

Ž . Ž .2 If p ; q are primes and qrp ; Arp has height 1, then d p s
Ž .d q y 1.



YEKUTIELI AND ZHANG10

w xThe function d is called a codimension function in RD . In our case we
get:

THEOREM 1.13. Suppose A is a commutatï e noetherian k-algebra, B is a
Ž Ž T ..right noetherian k-algebra, and R g D Mod A m B is a dualizing complex.

Let I be the minimal injectï e resolution R in Mod A. Then:

Ž .1 There are functions d, r : Spec A ª Z, with r G 1 and constant on

connected components of Spec A, s.t.

Ž .r pqI ( J p .Ž .[ A
Ž .d p sq

Ž .2 If p ; q are primes of A and qrp ; Arp has height 1, then
Ž . Ž .d p s d q y 1.

Ž . Ž .3 A is catenary, and if A / 0 its Krull dimension is

Kdim A F max d p y min d p - `.� 4 � 4Ž . Ž .

Ž .4 B is an Azumaya A-algebra.

The proof of the theorem is after the next lemma.

LEMMA 1.14. Assume in addition that A is local. Then there is an integer
q Ž . q Ž .Td such that Ext M, R s 0 and Ext N, R s 0 for all q / d, all finiteA B

length A-modules M, and all finite length BT-modules N.

w x ŽProof. According to Ye3, Proposition 5.4 which works even when
.A / B; cf. ibid. Proposition 2.5 , left and right multiplications on R induce

Ž . Ž .Tring isomorphisms A ( End R ( Z B . Moreover since A isDŽModŽ AmB ..
T 0 Ž .noetherian and B ( Ext R, R we see that B is a finite A-algebra. If NA

Ž T . q Ž .Tis an A-central A m B -module, then Ext N, R is a central A-bimod-B

ule.
� < pŽ . 4Denote by K the residue field of A. Let p [ min p Ext K, R / 00 A

� < pŽ . 4and p [ max p Ext K, R / 0 . By induction on length we see that for1 A

� < pŽ . 4every finite length A-module M, p s min p Ext M, R / 0 and p s0 A 1
� < pŽ . 4max p Ext M, R / 0 .A

Now take a nonzero finite length BT-module N. Since we can view N as
q Ž .Ta central A-bimodule, it follows that Ext N, R is also a central A-bi-B

module for every q; and so it has finite length. Define q [0
� < q Ž . 4 � < q Ž . 4T Tmin q Ext N, R / 0 and q [ max q Ext N, R / 0 . In the E -pageB 1 B 2

of the spectral sequence of Proposition 1.7 we have nonzero terms E p1, yq0
2

p1Ž q0 Ž .. p0 , yq1 p0Ž q1 Ž ..T Ts Ext Ext N, R and E s Ext Ext N, R , that appear inA 2 AB B

the right-top and left-bottom corners, respectively. The convergence of the
spectral sequence forces p s q and p s q . Therefore we get d [ p s1 0 0 1 1

q s q s p .0 1 0
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Ž .Proof of Theorem 1.13. 1 As observed in the proof of the lemma, B is
a finite A-algebra. Take a prime p ; A, and define B [ B m A andp A p

bŽ Ž T ..R [ A m R m B g D Mod A m B . We claim that R is a dual-p p A B p p p p

izing complex.
First note that the cohomologies H qR are central A-bimodules. Since

A ª A is flat and A m A s A , there are isomorphisms H qRp p A p p p

( A m H qR ( H qR m B . Therefore R ( A m R ( R m B inp A B p p p A B p
bŽ Ž T .. qD Mod A m B . It is easy to see that the cohomology bimodules H R

Ž . Tare finitely generated on both sides, R Hom R , R ( B andA p p pp

Ž .TR Hom R , R ( A .B p p pp

In order to verify that R has finite injective dimension over BT itp p
q Ž .Tsuffices to show that Ext N, R vanishes for all finitely generatedB pp

BT-modules N, for large q. Now we can write N ( N
X
m B for somep B p

T X q Ž . q Ž X .T Tfinitely generated B -module N . Then Ext N, R ( Ext N , R mB p B Ap

A . Likewise for the injective dimension over A . So indeed R isp p p

dualizing.
Ž .Since the multiplicity of the indecomposable injective J p is measuredA

q Ž Ž . . Ž .by Ext k p , R , where k p is the residue field, the lemma says thatA pp

Ž . Ž .J p occurs in the complex I in only one degree, say d p . The fact thatA

Ž .the multiplicity r p is locally constant will be proved in part 4 below.

Ž .2 Choose a g q y p , so in the exact sequence

a 6

0 ª Arp Arp ª M ª 0Ž . Ž .q q

q Ž .the A -module M has finite length. Applying Ext y, R to this sequenceq A

we obtain an exact sequence of finitely generated A -modulesq

aq q qq16

Ext Arp , R Ext Arp , R ª Ext M , RŽ . Ž . Ž .Ž . Ž .q qA A A

Ž .for each q. By Nakayama’s Lemma and part 1 we find that
q ŽŽ . . Ž . Ž . Ž .Ext Arp , R s 0 unless q q 1 s d q . Hence d p s d q y 1 asA q

claimed.

Ž . Ž .3 This follows trivially from 2 .

Ž .4 Pick a prime ideal p ; A. Since R is a dualizing complex inp

Ž Ž T .. dŽp .Ž .D Mod A m B , the lemma tells us that the functors Ext y, Rp p A pp
dŽp .Ž .Tand Ext y, R are a duality between the categories of finite lengthB pp

modules over A and BT. Furthermore since this duality is A -linear, itp p p
n Ž n .Trestricts to a duality between Mod A rp and Mod B rp B forf p p f p p p

n Ževery n G 1. Since Mod A rp has an auto-duality, namely Hom y,f p p A p

Ž .. nJ p , it follows that there is an equivalence between Mod A rp andA f p p

Mod B rp n B . Morita Theory says there is an isomorphism f : B rp n Bf p p p n p p p
, n6

Ž . Ž .M A rp for some number r n .r Žn. p p
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Since the isomorphisms f all arise from the same equivalence, they cann

Ž . Ž .be made compatible, and in particular we have r n s r p for all n. In
ˆ ˆ ˆŽ .the inverse limit we get A m B ( M A as A -algebras.p A r Žp . p p

Since p was an arbitrary prime ideal of A, we conclude that the
T Ž .multiplication map B m B ª End B is bijective. Therefore B is Azu-A A

maya over A. As a projective A-module, the rank of B at a prime p is
2Ž .precisely r p , so the function r is locally constant.

Remark 1.15. A complex such as I in Theorem 1.12 is called a residual
complex. It actually depends functorially on R: I s ER, where E is the
Cousin functor. Noncommutative variants of the Cousin functor are stud-

w xied in Ye2, YZ2 . In particular one can show that the complex I can be
made into a complex of bimodules, where on the right it is the minimal
injective resolution of R in Mod BT. It follows that R is an Auslander

w xdualizing complex, as defined in Section 2. In YZ2 we show that a more
complicated version of Theorem 1.13 holds when A s B is a PI algebra.

EXAMPLE 1.16. Let A be a noetherian commutative regular ring of
winfinite Krull dimension}see Nagata’s example Na, Appendix, p. 203,

x ŽExample 1 . The complex R s A is a pointwise dualizing complex see
w x. Ž . Ž . Ž .RD, Sect. V.8 , and R Hom y, A : D Mod A ª D Mod A is a dual-A f f

ity. However, by Theorem 1.13, there is no dualizing complex in
bŽ Ž T ..D Mod A m B for any right noetherian k-algebra B.

EXAMPLE 1.17. Let A be the non-catenary noetherian commutative
w xlocal ring of Na, Appendix, p. 203, Example 2 . Then again there is

bŽ Ž T ..no dualizing complex in D Mod A m B for any right noetherian k-
algebra B.

2. AUSLANDER DUALIZING COMPLEXES

w x ŽThe basic ideas in this section already appear in Ye2, Sect. 1 which
.treats graded algebras .

bŽ Ž T ..Assume R g D Mod A m B is a dualizing complex. Let M be a
finitely generated A-module. The grade of M with respect to R is

q � 4j M [ inf q N Ext M , R / 0 g Z j ` .� 4Ž . Ž .R ; A A

Similarly define j T for a BT-module.R; B

We are ready to define the notion appearing in the title of the paper.

DEFINITION 2.1. Let A and B be k-algebras, with A left noetherian
Ž Ž T ..and B right noetherian, and let R g D Mod A m B be a dualizing
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complex. We say that R has the Auslander property, or that R is an
Auslander dualizing complex, if

Ž . Ti for every finitely generated A-module M, integer q, and B -
q Ž . Ž .Tsubmodule N ; Ext M, R one has j N G q;A R; B

Ž . Tii the same holds after exchanging A and B .

Note that the role of the algebras A and BT is symmetric. Also note
w xthat if R is an Auslander dualizing complex, then any shift R n is also an

Ž .Auslander dualizing complex the shift cancels out in the double dual .

EXAMPLE 2.2. Let A be a commutative k-algebra and R a central
dualizing complex over it. From Proposition 1.12 it is clear that R is

Ž . Ž .Auslander. For a prime ideal p one has j Arp s d p .R; A

Ž .EXAMPLE 2.3. a If A is Gorenstein, i.e., the bimodule A has finite
injective dimension on both sides, then R s A is a dualizing complex over

w xA. If A is an Auslander]Gorenstein ring in the sense of Bj , then R s A

is an Auslander dualizing complex.

Ž .b If A is a finite k-algebra, i.e., rank A - `, then the bimodulek
U Ž . UA [ Hom A, k is injective on both sides, and R s A is an Auslanderk

Ž .dualizing complex over A. Clearly j M s 0 for all M.R; A

k VŽ . Ž .c Let A be the matrix algebra where V is a finite rank0 k

k-module. Since A is hereditary it is also Gorenstein, so both A and AU

are dualizing complexes, and if V / 0 they are non-isomorphic. According
w xto ASZ, Example 5.4 , the dualizing complex A is Auslander iff rank Vk

w xF 1. See also Ye3, Sect. 3 .

More examples of algebras with Auslander dualizing complexes are in
Examples 6.11]6.15.

w x ŽThe next definition is taken form MR, Sect. 6.8.4 with a slight
.modification}we allow negative dimensions .

DEFINITION 2.4. An exact dimension function is a function dim which
assigns to each module M g Mod A a value dim M in an ordered setf

containing y`, R, and some infinite ordinals, and satisfies the following
axioms:

Ž .i dim 0 s y`.

Ž . X Yii For every short exact sequence 0 ª M ª M ª M ª 0 one
� X Y4has dim M s max dim M , dim M .

Ž .iii If p M s 0 for some prime ideal p , and M is a torsion Arp-
module, then dim M F dim Arp y 1.
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Familiar examples of exact dimension functions are the Krull dimension
Ž .Kdim and sometimes the Gelfand]Kirillov dimension GKdim.

LEMMA 2.5. A function dim defined on Mod A and satisfying axiomsf

Ž . Ž . Ž Ž . Ž ..i ] ii resp. axioms i ] iii extends uniquely to a function on Mod A,
Ž . Ž . Ž Ž . Ž ..satisfying axioms i ] ii resp. axioms i ] iii and the axiom

Ž . � X < X 4iv dim M s sup dim M M ; M finitely generated .

The proof of the lemma is standard.
Usually we will have a pair of dimension functions, one on Mod A and

the other on Mod BT ; when necessary we shall distinguish between them
by writing dim and dim T , respectively.A B

DEFINITION 2.6. An exact dimension function dim is called finitely

partitï e if given a finitely generated module M there is a number l , such0

that for every chain of submodules M s M p M ??? p M with0 1 l

dim M rM s dim M one has l F l .i iq1 0

Ž w x.In the next two definitions taken from ASZ, Ye2 dim denotes a
Ž . Ž . Ž .function on Mod A satisfying axioms i , ii , and iv .

Ž . XDEFINITION 2.7. 1 A module M is called dim-pure if dim M s dim M

for every nonzero submodule M
X
; M.

Ž .2 A module M is called dim-essentially pure if M contains an
essential submodule which is pure.

Ž . X3 A module M is called dim-critical if M / 0, and dim MrM -

dim M for every 0 / M
X m M.

Ž . Ž .DEFINITION 2.8. 1 Let M dim be the full subcategory of Mod Aq

Ž . Ž .consisting of modules M with dim M F q, and let M dim [ M dimq, f q

l Mod A.f

Ž .2 Given a module M let G M ; M be the largest submoduleM Ždim.q

M
X
; M such that dim M

X
F q.

Ž .Since M dim is a localizing subcategory of Mod A the submoduleq

ŽG M is well defined and in fact G is a left exact idempotentM Ždim. M Ždim.q q

. Tfunctor . The corresponding subcategories of Mod B shall be denoted by
T Ž . T Ž .M dim and M dim .q q, f

DEFINITION 2.9. Let M be a finitely generated A-module. The canoni-
cal dimension of M with respect to R is

� 4Cdim M [ yj M g Z j y` .Ž .R ; A R ; A

Likewise define Cdim T .R; B
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The canonical dimension will not be an exact dimension function in
general. However, we have the following theorem, which generalizes

Ž w x.results of Bjork and Levasseur the graded case was proved in Ye2 .¨

THEOREM 2.10. If R is an Auslander dualizing complex then Cdim isR; A

a finitely partitï e exact dimension function.

The proof of this theorem appears later in the section. The key step is:

LEMMA 2.11. Let 0 ª M
X
ª M

X
ª M

Y
ª 0 be a short exact sequence of

finitely generated A-modules. Then

j M s inf j M
X , j M

Y .� 4Ž . Ž . Ž .R ; A R ; A R ; A

w xProof. The proof goes along the lines of the proofs in Bj, Lev . By
Proposition 1.7 we have a convergent spectral sequence

E p , q [ Ext p
T Extyq M , R , R « M , 2.12Ž . Ž .Ž .2 B A

Ž wso there is a corresponding filtration called the b-filtration in Lev,
x.Theorem 2.2

M s FydM > Fydq1M > ??? > F dq1M s 0.

The Auslander condition tells us that E p, q s 0 if p - yq. So the2
Ž .spectral sequence lives in a bounded region of the p, q plane: p G yq, q

Ž . Ž .F yj M and p F d see Fig. 1 . The coboundary operator of E hasA; R r

Ž . < <bidegree r, 1 y r and r G 2. We conclude that for every p F d there is
an exact sequence of A-modules

F pm
p , yp p0 ª ª E ª Q ª 0 2.13Ž .2pq1F M

p pqr , ypqŽ1yr . Ž wwith Q a subquotient of [ E cf. Bj, Theorem 1.3; Lev,2r G 2
x.Theorem 2.2 .

Ž p pq1 .By the Auslander property it then follows that j F MrF M G pR; A

w xfor all M and p. Just as in Bj, Proposition 1.6 , one uses descending
Ž p .induction on p, starting at p s d q 1, to prove that j F M G p for allR; A

p. This implies that

j T Ext jR ; AŽM . M , R s j M .Ž . Ž .Ž .R ; B R ; A

w xNow continue exactly like in Bj, Proposition 1.8 .

Ž . Ž .We conclude that Cdim verifies axiom ii . Axiom i holds trivially.R; A

Ž . Ž .TBy symmetry Cdim also verifies axioms i ] ii .R; B
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Ž . Ž .FIG. 1. The E term of the spectral sequence 2.12 in the p, q plane.2

Ž Ž T ..THEOREM 2.14. Suppose R g D Mod A m B is an Auslander dualiz-
ing complex. Let M g Mod A be nonzero and Cdim M s n. Then:f R

Ž . ynŽ .1 Ext M, R is Cdim -pure of dimension n.A R

Ž . yp Ž yp Ž . .2 For each p, Ext Ext M, R , R is Cdim -pure of dimension pB8 A R

or is 0.
Ž .3 For each p there is an exact sequence

0 ª G M ª G M ª Extyp
T Extyp M , R , R ª Q p

ª 0,Ž .Ž .M M B Apy 1 p

p Ž .functorial in M, where Cdim Q F p y 2 and M s M Cdim .R p p R

Ž . Ž .Proof. 1 Because the line q s yj M is on the boundary of theR; A

Ž .region of support of the spectral sequence 2.12 , and the coboundary
Ž .operator of E has bidegree r, 1 y r , r G 2, we see that for this value ofr

q there is a bounded filtration E p, q > E p, q > . . . , with E p, qrE p, q a2 3 r rq1

subquotient of E pq r , qqŽ1yr .. Now the abutment of the spectral sequence isr

Ž . p, qconcentrated on the line p s yq of the p, q -plane, so E s 0 forr

Ž .p ) yq and r c 0. By Lemma 2.11 we conclude that for q s yj MR; A

and p ) yq,

j Ext p
T Extyq M , R , R s j E p , q G p q 2Ž . Ž .Ž .Ž .R ; A B A R ; A 2

Ž w Ž .x w xcf. Bj, formula 1.10 . Just like in Bj, Proposition 1.11 it follows that
pŽ p Ž . . Ž . jR ; AŽM .Ž .TExt Ext N, R , R s 0 for p ) j M and N s Ext M, R . SoA B R; A A

w xby Bj, Proposition 1.9 we conclude that N is pure.
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Ž . yp Ž . Ž .T2 Take N [ Ext M, R . Then Cdim N F p and part 1A R; B

applies.

Ž . Ž . Ž .3 By part 2 , the sequence 2.13 and induction on p we see that
ypG M s F M.M p

Ž .For an integer q let M [ M Cdim ; Mod A be the localizingq q R

subcategory from Definition 2.8. The filtration by dimension of support
� 4M of Mod A is called the nï eau filtration in commutative algebraicq

geometry. For each q the quotient category M rM is a locally noethe-q qy1

rian abelian category, and the full subcategory M rM is noetherianq, f qy1, f

Ž w x.see ASZ, Lemma 1.1 . By symmetry we have corresponding localizing
subcategories MT ; MT ; Mod BT.q, f q

w xRecall from ASZ, Section 1 that two abelian categories C and D are
said to be dual if they are anti-equivalent, i.e., if C is equivalent to the
opposite category DT. Two categories C and D are said to be in step duality

if there are filtrations by dense abelian subcategories

0 s C ; C ; ??? ; C s C andn y1 n n0 0 1

0 s D ; D ; ??? ; D s Dn y1 n n0 0 1

such that the quotient categories C rC and D rD are dual for alli iy1 i iy1

i s n , . . . , n . Now Theorem 0.2 is a special case of:0 1

Ž Ž T ..THEOREM 2.15. Suppose R g D Mod A m B is an Auslander dualiz-
ing complex. Then Mod A and Mod BT are in step duality. More precisely,f f

q Ž . q Ž .Tfor e¨ery q the functors Ext y, R and Ext y, R induce a dualityA B

between the quotient categories M rM and MT rMT
q, f qy1, f q, f qy1, f .

w xProof. Use Theorem 2.14 and the proof of ASZ, Theorem 1.2 .

COROLLARY 2.16. For each q the category M rM is artinian, i.e.,q, f qy1, f

e¨ery object has finite length.

w xProof. By ASZ, Lemma 1.1 the categories M rM andq, f qy1, f

MT rMT are noetherian, hence by Theorem 2.15 they are alsoq, f qy1, f

artinian.

At last here is:

Ž . Ž .Proof of Theorem 2.10. We already verified axioms i and ii . The fact
that Cdim is finitely partitive is immediate from Corollary 2.16, and thisR

Ž . w xin turn easily implies axiom iii }cf. MR, Corollary 8.3.6 .

COROLLARY 2.17. E¨ery finitely generated A-module has a Cdim -criticalR

composition series.
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w xProof. This is by Theorem 2.10 and MR, Proposition 6.2.20 .

Let

� 4d [ inf Cdim M N M g Mod A , M / 00 R

� 4d [ Cdim A s sup Cdim M N M g Mod A .1 R R

Ž Ž T ..COROLLARY 2.18. Suppose R g D Mod A m B is an Auslander dual-
izing complex. Then

Kdim M F Cdim M y dR 0

for all finitely generated A-modules M. In particular if Cdim M s d thenR 0

M is artinian.

Proof. By induction, starting with q s d , Theorem 2.14 and Corollary0

2.16 show that Kdim M F q y d for all M g M .0 q, f

w xHere is a generalization of Bj, Theorem 1.14 .

Ž .THEOREM 2.19 Gabber’s Maximality Principle . Let A and B be k-alge-
Ž Žbras, with A left noetherian and B right noetherian, and let R g D Mod A m

T ..B be an Auslander dualizing complex. Suppose N is a Cdim -pure A-mod-R

ule with Cdim N s n, and M is a finitely generated submodule. Then there isR

˜ ˜ ˜a unique maximal module M such that M ; M ; N, M is finitely generated,
˜and Cdim MrM F n y 2.R

Proof. Note that we do not assume N is finitely generated. The
uniqueness is clear because Cdim is an exact dimension function. So itR

˜remains to show existence. If M is any finitely generated submodule of N
˜ ynŽ .containing M, such that Cdim MrM F n y 2, then Ext M, R (R A

yn ˜ ˜Ž . Ž .Ext M, R . Hence, by Theorem 2.14 3 , the module M embeds functori-A
ynŽ ynŽ . .Tally into the finitely generated A-module Ext Ext M, R , R . ThisB A

˜implies there is a maximal such M.

w xThe next two theorems generalize GL, Theorems 1.4 and 1.6 by
eliminating the Gorenstein and Cohen]Macaulay conditions. From here

Ž .on we consider a single noetherian algebra A i.e., A s B .

DEFINITION 2.20. Let dim be an exact dimension function.

Ž . T1 dim is called symmetric if dim M s dim M for every bimod-A A

ule M finitely generated on both sides.

Ž . T2 dim is called weakly symmetric if dim M s dim M for everyA A

bimodule M which is a subquotient of A.
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LEMMA 2.21. Let dim be a weakly symmetric exact dimension function.

Ž .1 Let M be a finitely generated dim-pure A-module, and let I [
Ž .Ann M . If dim M s dim ArI then ArI is dim-pure.A

Ž .2 Let I be an ideal of A such that ArI is dim-pure and let q be a

prime ideal of A that is minimal o¨er I. Then dim Arq s dim ArI.

w xProof. This is completely analogous to KL, 9.6 and 9.5 .

w xRecall from GL that Spec A is said to have normal separation provided
that for any pair prime ideals p m q , the factor qrp contains a nonzero
normal element of Arp. Under the assumptions of the lemma we say that
Tau¨el’s height formula holds in A provided

height p q dim Arp s dim A

for all primes p.

THEOREM 2.22. Suppose that A is a noetherian k-algebra, R is an

Auslander dualizing complex o¨er A, and Cdim is weakly symmetric. LetR

p m q be prime ideals of A with height qrp s 1. If there exists an element

a g q y p that is normal modulo p , then Cdim Arp s Cdim Arq q 1.R R

w xProof. Use the proof of GL, Theorem 1.4 but replace GKdim by
w xCdim , and use Lemma 2.21 instead of Len, Lemmas 2 and 3 .R

THEOREM 2.23. Suppose that A is a noetherian k-algebra, R is an

Auslander dualizing complex o¨er A, and Cdim is weakly symmetric. IfR

Spec A is normally separated, then A is catenary. If in addition A is prime,
then Tau¨el’s height formula holds.

w xProof. The proof of GL, Theorem 1.6 works here after we replace
GKdim by Cdim .R

We call attention to Question 3.15 regarding the possible symmetry of
Cdim .R

w xThe Macaulay property of SZ is adapted in the following way, to be
used later in the paper.

DEFINITION 2.24. Suppose R is an Auslander dualizing complex over
A. Let dim be an exact dimension function on finitely generated A-mod-
ules. If there is some integer c such that

dim M s Cdim M q cR

for all M g Mod A, then we say R is Macaulay with respect to dim, orf

that R is dim-Macaulay.
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Note that if R s A, then ‘‘GKdim-Macaulay’’ is equivalent to ‘‘Cohen]
w xMacaulay’’ as it is used in Bj, Lev, ASZ, SZ . This is because GKdim M q

Ž .j M s c s dim A in this case.R

EXAMPLE 2.25. If A is a commutative affine k-algebra and R is any
central dualizing complex over A, then R is Auslander and GKdim-
Macaulay. In this case we also have Kdim M s GKdim M for all finitely
generated A-modules in M.

3. RIGID DUALIZING COMPLEXES

In this section we consider dualizing complexes which satisfy a special
w xcondition discovered by Van den Bergh VdB . Rigid dualizing complexes

are unique and even functorial. Furthermore if R is an Auslander rigid
dualizing complex then the canonical dimension Cdim is particularly wellR

Ž .behaved as examples indicate; see Question 3.15 . By default A and B

denote noetherian k-algebras.
First we shall need some more notation for bimodules. Suppose A and

B are k-algebras. For an element a g A we denote by aT g AT the same
T T Ž .T Telement. Thus for a , a g A, a ? a s a ? a g A . With this notation1 2 1 2 2 1

if M is a right A-module then the left AT action is aT ? m s m ? a, m g M.
e e Ž e.T T TThe algebra A has an involution A ª A , a m a ¬ a m a which1 2 2 1

allows us to regard every left Ae-module M as a right Ae-module in a
consistent way:

TT T Ta m a ? m s a m a ? m s m ? a m a s a ? m ? a .Ž . Ž . Ž .1 2 2 1 2 1 1 2

Ž . Ž .Given an A m B8 -module M and a B m A8 -module N we define a
mixed action of Ae m B e on the tensor product M m N as follows. Ae acts
on M m N by the outside action

a m aT ? m m n [ a ? m m n ? a ,Ž . Ž . Ž . Ž .1 2 1 2

whereas B e acts on M m N by the inside action

b m bT ? m m n [ m ? b m b ? n .Ž . Ž . Ž . Ž .1 2 2 1

By default we regard the outside action as a left action and the inside
action as a right action. If A s B and M s N then the two actions of Ae

on M m M are interchanged by the involution m m m ¬ m m m .1 2 2 1

However, for the sake of definiteness in this case, given an Ae-module L,
Ž .eHom L, M m M shall refer to the homomorphisms L ª M m M whichA

are Ae-linear with respect to the outside action.
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w xDEFINITION 3.1 VdB, Definition 8.1 . Suppose R is a dualizing com-
plex over A. If there is an isomorphism

, 6

ef : R R Hom A , R m RŽ .A

Ž e. Ž .in D Mod A , we call R, f a rigid dualizing complex.

w xIt is obvious that if R is rigid, then any shift R n , for n / 0, is no
Ž .longer rigid. Van den Bergh proved that a rigid dualizing complex R, f

Ž e. Ž wover A is unique, up to an isomorphism in D Mod A see VdB, Proposi-
x.tion 8.2 . Below we extend this result by proving that rigid dualizing

complexes are functorial, in a suitable sense.
qŽ .Let A ª B be a k-algebra homomorphism. Given M g D Mod B , N

qŽ . Ž .g D Mod A , and a morphism c : M ª N in D Mod A , c factors
Ž .naturally through R Hom B, N . This can be seen by replacing N withA

qŽ .an injective resolution I in D Mod A , and then we can take c to be a
homomorphism of complexes. The image of c will then land inside

Ž .Hom B, I . The same fact is true for bimodules.A

We say a k-algebra homomorphism A ª B if finite if B is finitely
generated as a left and as a right A-module.

THEOREM 3.2. Let A ª B be a finite k-algebra homomorphism. Suppose
Ž . Ž .A and B ha¨e rigid dualizing complexes R , f and R , f , respectï ely.A A B B

Ž e.Then there is at most one morphism c : R ª R in D Mod A satisfyingB A

Ž . Ž .conditions i and ii below:

Ž .i c induces an isomorphism

R ( R Hom B , R ( R Hom T B , RŽ . Ž .B A A A A

Ž e.in D Mod A .

Ž .ii The diagram

fB 6

Ž .eR Hom B , R m RR B B BB

6

cmcc

6

fA 6

Ž .eR R Hom A , R m RA A A A

Ž e.in D Mod A is commutatï e.

The theorem is proved after this lemma. Given a k-algebra homomor-
Ž .phism A ª B, denote by Z A ; B the centralizer of A.B

LEMMA 3.3. Let A ª B be a finite k-algebra homomorphism. Suppose A

and B ha¨e dualizing complexes R and R , respectï ely, and c : R ª RA B A B

Ž e. Ž .is a morphism in D Mod A satisfying condition i of the theorem. Then
Ž . Ž .eHom R , R is a free left and right Z A -module with basis c .DŽMod A . B A B
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Ž . T Ž .TProof. Denote by D [ R Hom y, R and D [ R Hom y, RA A A A

the dualizing functors. By assumption R ( DT B. Applying the functor DB

Ž .we get isomorphisms of left Z A -modulesB

Hom e R , R ( Hom e DT B , DTAŽ . Ž .DŽMod A . B A DŽMod A .

( Hom e A , BŽ .DŽMod A .

( Hom e A , B ( Z A ,Ž . Ž .A B

and likewise for the right action.

Proof of the Theorem. Assume c
X is another such isomorphism. Ac-

cording to the lemma above,

c
X
s b m 1 c s 1 m bT cŽ . Ž .1 2

Ž .=for suitable b g Z A . Soi B

c
X
m c

X
s b m bT c m c .Ž . Ž .1 2

Ž . Ž e.Now the diagram in condition ii consists of morphisms in D Mod A .
Since multiplications by b and bT are Ae-linear, we see that1 2

b m 1 c s b m bT c g Hom e R , R .Ž . Ž . Ž .1 1 2 DŽMod A . B A

Hence dividing by the unit b m 1, we see that b s 1.1 2

Ž .COROLLARY 3.4. A rigid dualizing complex R, f o¨er A is unique up to

a unique isomorphism.

Ž X X.Proof. Suppose R , f is another rigid dualizing complex. We claim
, X e6

Ž .that there is an isomorphism c : R R in D Mod A which satisfies
Ž .condition ii of the theorem. By Theorem 3.2 such c is unique.

,X X6

To produce c , choose any isomorphism c : R R , which we know
w x Ž .=exists by VdB, Proposition 8.2 . Then by Lemma 3.3 there are a g Z Ai

such that

y1 y1X X Xy1 X XTa m 1 c s 1 m a c s f c m c f .Ž . Ž . Ž .1 2

The isomorphism

c [ a m 1 c
X
s 1 m aT c

X .Ž . Ž .1 2

Ž .will satisfy condition ii .

Ž .Thus we may speak of the rigid dualizing complex of A if it exists .
Lemma 3.3 can be sharpened when A s B.
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Ž .PROPOSITION 3.5. Let R, f be a rigid dualizing complex o¨er A. Then

the two k-algebra homomorphisms

l, r : Z A ª End e RŽ . Ž .DŽMod A .

from the center of A, namely left and right multiplication, are both isomor-
phisms, and are equal.

Proof. By Lemma 3.3 with A s B and c s 1, we see that l and r are
Ž . X y1 Ž . Ž .isomorphisms. Take a g Z A , and let a [ r l a g Z A . Using the

definition of the mixed action on R m R and the rigidification isomor-
Ž .phism f, the commutation or conjugation of a across R is transferred to

commutation of a
X across A. Since a

X does commute with A it follows that
XŽ . Ž . Ž .l a s r a and so in fact a s a .

We will often omit reference to the rigidifying isomorphism f.

COROLLARY 3.6. If R is a rigid dualizing complex o¨er A then for any q
q Ž .the cohomology bimodule H R is central o¨er Z A .

DEFINITION 3.7. Let A ª B be a finite homomorphism of k-algebras.
Ž . Ž .Assume the rigid dualizing complexes R , f and R , f exist. If thereA A B B

is a morphism c satisfying the conditions of Theorem 3.2 then we call it
the trace morphism and denote it by Tr .Br A

The next corollary is obvious.

COROLLARY 3.8. Let A ª B and B ª C be finite k-algebra homomor-
Ž . Ž .phisms. Assume the rigid dualizing complexes R , f , R , f , andA A B B

Ž .R , f and the trace morphisms Tr and Tr exist. Then TrC C Br A Cr B Cr A

exists too, and

Tr s Tr Tr .Cr A Br A Cr B

The existence of the trace morphism allows us to transfer good proper-
ties of R to R .A B

PROPOSITION 3.9. Let A ª B be a finite homomorphism of k-algebras,
and assume the rigid dualizing complexes R and R and the trace morphismA B

Tr exist.Br A

Ž . Ž Ž T ..1 Let C be any k-algebra. Then for M g D Mod B m C there is a

functorial isomorphism

R Hom M , R ( R Hom M , RŽ . Ž .B B A A

Ž Ž T ..in D Mod C m A .
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Ž .2 If R is Auslander then so is R .A B

Ž .3 For any B-module M, Cdim M s Cdim M.R ; A R ; BA B

Ž .4 If R is GKdim-Macaulay, then so is R .A B

Ž .5 Suppose A ª B is surjectï e. If R is Kdim-Macaulay then soA

is R .B

Ž .Proof. 1 We can assume R and R are complexes of injectives overA B

Ae and B e, respectively, and Tr is a homomorphism of complexes.Br A

Ž . Ž .Then we get a functorial morphism R Hom M, R ª R Hom M, RB B A A

Ž Ž T ..in D Mod C m A . To prove it’s an isomorphism we can forget the
C-module structure. Because the two functors are way-out in both direc-

Ž w x.tions see RD, Sect. 1.7 and they send direct sums to direct products, it
suffices to check for an isomorphism when M s B. But that’s given.

Ž . Ž .2 , 3 Let M be a finitely generated B-module and N ;
q Ž . T Ž . q Ž .Ext M, R a B -submodule. Then by part 1 , N ; Ext M, R asB B A A

T p Ž . p Ž .T TA -modules, and for every p, Ext N, R ( Ext N, R as A-modules.B B A A

This proves the Auslander condition for B and the dimension equality for
finitely generated B-modules.

Ž . Ž .4 This follows from part 3 and the fact GKdim M s GKdim M.A B

Ž . Ž .5 This is similar to 4 .

DEFINITION 3.10. Suppose A has an Auslander rigid dualizing complex
R. Then we denote the canonical dimension Cdim by Cdim.R

EXAMPLE 3.11. Suppose A is an affine k-algebra and finite over its
Žcenter. Then we can find a smooth integral commutative k-algebra C e.g.,

. Ž .a polynomial algebra , and a finite homomorphism C ª Z A . Say
n w xKdim C s n. Since V n is a rigid dualizing complex over C, it followsCr K

w xfrom Ye3, Proposition 5.9 that

n w xR [ R Hom A , V nŽ .C Cr k

is a rigid dualizing complex over A.

k VŽ .EXAMPLE 3.12. Let A be the algebra where V is a finite rank0 k
U Ž .k-module. The rigid dualizing complex is A [ Hom A, k . Now A isk

hereditary, hence Gorenstein, so the bimodule A is a dualizing complex.
When V / 0 the dualizing complexes A and AU are not isomorphic, so A

is not rigid then.

EXAMPLE 3.13. Let t , t , . . . be a countable sequence of commuting1 2
Ž .indeterminates and let C [ k t , t , . . . be the field of rational functions.1 2

We claim that as k-algebra, C has no rigid dualizing complex. Since any
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s w xdualizing complex over C has to be of the form R s C n for an
Ž wautomorphism s and an integer n by Ye3, Corollary 4.6 and Proposi-

x. i Ž e.etions 3.4 and 3.5 , it suffices to prove that Ext C, C s 0 for all i. ThisC

follows from the next lemma with n s 0.

LEMMA 3.14. Let D [ C erI where I is the ideal generated by then
i Ž .eelements f [ x m 1 y 1 m x for j s 1, . . . , n. Then Ext C, D s 0 forj j j C n

all i, n G 0.

i Ž .eProof. Assume on the contrary that Ext C, D / 0 for some i and n.C n

Let i be the smallest such i. Since f is nonzero in the domain D0 nq1 n

there is a short exact sequence
fnq1 6

0 ª D D ª D ª 0n n nq1

of C e-modules. That induces an exact sequence
fnq1i y1 i i6

0 0 0e e e0 s Ext C , D ª Ext C , D Ext C , DŽ . Ž . Ž .C nq1 C n C n

e i0 Ž .eBut f annihilates the C -module C, which implies Ext C, D s 0,nq1 C n

contradicting the choice of i .0

We end the section with a basic question.

QUESTION 3.15. Let R be a rigid dualizing complex and M an A-bimodule

finitely generated on both sides. Is there a functorial isomorphism
Ž . Ž .TR Hom M, R ( R Hom M, R ? Or, at least, is Cdim M sA A R; A

Cdim T M?R; A

For a partial answer turn to Section 6, where the presence of auxiliary
filtrations allows us to take advantage of results in Sections 4]5 on graded
algebras.

4. DUALIZING COMPLEXES OVER GRADED ALGEBRAS

In this section we consider connected Z-graded k-algebras, namely
algebras A s [ A with A ( k and A a finitely generated k-mod-n 0 nnG 0
ule.

For such an algebra A let GrMod A be the category of Z-graded left
modules, with degree 0 homomorphisms. For M, N g GrMod A we write
Ž . Ž .M n for the shifted module with M n s M , andi nqi

Homgr M , N [ Homgr M , N n .Ž . Ž .Ž .[A GrMod A
ngZ

There is a forgetful functor GrMod A ª Mod A. Observe that
gr Ž . Ž .Hom M, N ; Hom M, N with equality when M is finitely generated.A A
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GrMod A is an abelian category with direct and inverse limits, enough
Ž .injectives, and enough projectives. Let D GrMod A be the derived cate-

gr Ž . Lgory. The derived functors R Hom M, N and M m N are calculatedA A

just as in the ungraded case, see Section 1, but using graded-projectives or
graded-injectives.

We say M g GrMod k is locally finite if each M is a finitely generatedn
U grŽ . Ž .k-module. Let M [ Hom M, k . Denote by D GrMod A the subcate-k lf

gory of complexes with locally finite cohomologies. Matlis duality says that
UU Ž .M ( M for M g D GrMod A .lf

We denote by m the augmentation ideal [ A of A, and we writenn) 0
G M for the m-torsion submodule of a graded A-module M. There is am

Ž w x.derived functor R G , which is calculated by graded-injectives see Ye1 .m
i i Ž .The cohomology modules are H R G M s lim Ext ArA , M . Wem nª A G n

write mT for the augmentation ideal of AT.
The definitions and results of the previous sections can all be translated

to the graded category by adding the adjective ‘‘graded’’ where needed,
like ‘‘graded dualizing complex,’’ ‘‘graded Auslander property,’’ etc. The
proofs of the graded variants of these results are identical to the ungraded
ones, so there is no need to repeat them. In the rest of the paper we shall
refer to such a result by writing something like ‘‘according to the graded
variant of Theorem . . . .’’

Remark 4.1. Let G be any finitely generated abelian group. Fix an
isomorphism G ( Z

r = T , where T is a finite group, and a basis g , . . . , g1 r

of Z
r. Let G be the semigroup generated by 0 and the elementsq

g q t, 1 F i F r, t g T. For g, g
X
g G we write g G g

X if g y g
X
g G , andi q

this defines a partial order on G. A G-graded k-algebra A is called
connected if A s [ A , A s k, and each A is finitely generated asg 0 gg g Gq

a module over k. The augmentation ideal of A is m [ [ A .gg ) 0
Note that the group homomorphisms f : G ª Z sending g ¬ 1 makesi

A into a connected Z-graded algebra, with A s [ A , n g Z.n gf Ž g .sn

It is not hard to see that all results in this paper which are stated for
connected Z-graded algebras are also valid for connected G-graded k-alge-
bras, for any G as above.

Throughout this section A and B are connected graded noetherian
k-algebras.

w xDEFINITION 4.2 Ye1, Definition 4.1 . A balanced dualizing complex

over A is a graded dualizing complex R such that

R G R ( R G T R ( AU
m m

Ž e.in D GrMod A .
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A balanced dualizing complex R is unique up to isomorphism in
Ž e.D GrMod A , and its endomorphisms are just elements of k. Thus if we

, U e6

Ž . Ž .choose an isomorphism f : RG R A in D GrMod A , the pair R, fm

is unique up to a unique isomorphism.
Ž w x.It had been known for some time by Ye1 that balanced dualizing

complexes exist for Artin]Schelter Gorenstein algebras, twisted homoge-
neous coordinate algebras, and algebras finite over their centers. Recently
additional existence results became available, due to the work of Van den

w xBergh. First recall the following definition taken from AZ .

DEFINITION 4.3. The condition x holds for a noetherian connected
i Ž .graded k-algebra A if for every M g GrMod A and integer i, Ext k, Mf A

is a finitely generated k-module.

w Ž .x wIn view of AZ, Proposition 3.1 3 , this definition is equivalent to AZ,
x w Ž .x wDefinition 3.2 ; and by AZ, Proposition 3.11 2 it is equivalent to AZ,
xDefinition 3.7 . The next lemma provides further characterization of the

condition x . Recall that a graded module M is said to be right bounded if
M s 0 for n c 0.n

LEMMA 4.4. Let A be a noetherian connected graded k-algebra and

M g GrMod A. Then the following are equï alent:f

Ž . i Ž .i Ext k, M is a finitely generated k-module for all i.A

Ž . iii H R G M is right bounded for all i.m

Ž . iiii H R G M is an artinian A-module for all i.m

Ž . Ž . w Ž .x Ž . Ž .Proof. i m ii is by AZ, Corollary 3.6 3 . iii « ii is immediate,
since the socle of H iR G M is a finitely generated k-module, hencem

Ž .bounded. Finally assume i , and let I be a minimal graded-injective
w x i Uresolution of M. From Ye1, Lemma 4.3 it follows that G I ( A mm

i iŽ .Ext k, M , which is artinian. Hence H RG M is artinian.A m

In an earlier paper we proved the next theorem.

w xTHEOREM 4.5 YZ1, Theorem 4.2 . Let A be a noetherian connected

graded k-algebra. If A has a balanced dualizing complex then the condition x

holds for A and AT , and the functors G and G T ha¨e finite cohomologicalm m

dimensions.

The converse, which is quite harder, was proved by Van den Bergh.

w xTHEOREM 4.6 VdB, Theorem 6.3 . Let A be a noetherian connected

graded k-algebra. Assume the condition x holds for A and AT , and the

functors G and G T ha¨e finite cohomological dimensions. Thenm m
U

R [ R G AŽ .A m

is a balanced dualizing complex.
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Let us summarize some other known results related to the balanced
dualizing complexes.

Ž .THEOREM 4.7 Local Duality . Let R be a balanced dualizing complex

o¨er a noetherian connected graded k-algebra A. Then for any graded k-alge-
Ž Ž T ..bra B and any M g D GrMod A m B there is a functorial isomorphism

UgrR Hom M , R ( R G M .Ž . Ž .A m

w xThis is proved by combining VdB, Theorems 5.1 and 6.3 . The theorem
w x bŽ .was first proved in Ye1 , but only for M g D GrMod A .f

w Ž .xPROPOSITION 4.8 VdB, Proposition 8.2 2 . A balanced dualizing com-
plex R is rigid in the graded sense.

w x ŽRemark 4.9. According to an exercise in VdB whose only proof we
.know is quite involved , if I is a graded-injective A-module, then I has

injective dimension F 1 in Mod A. An immediate consequence of this fact
is that a graded dualizing complex R over A is also an ungraded dualizing
complex. The special case we need, namely that a balanced dualizing
complex R is rigid in the ungraded sense, is proved by other means in
Corollary 6.7.

w x eHere is another result from VdB . Let us write m for the augmenta-A

tion ideal of Ae, so m e s m m AT q A m mT.A

w xTHEOREM 4.10 VdB, Corollary 4.8 . Assume A has a balanced dualizing
Ž e.complex R. Let M g D GrMod A ha¨e finitely generated cohomology mod-

ules on both sides. Then there is a functorial isomorphism

R G M ( R G M ( R G T M.m m meA

We obtain the following interesting result:

COROLLARY 4.11. Let R be a balanced dualizing complex o¨er A. Then

there is a functorial isomorphism

R Hom M , R ( R Hom T M , RŽ . Ž .A A

Ž e.for M g D GrMod A with finitely generated cohomology modules on both

sides.

We shall write Cdim instead of Cdim when R is the balancedA R; A

dualizing complex, and when we are working in GrMod A. Since a bal-
Ž .anced dualizing complex is rigid in the ungraded sense by Corollary 6.7 ,

this is consistent with Definition 3.10.
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DEFINITION 4.12. If A has a graded Auslander balanced dualizing
complex R we say A is graded Auslander. Furthermore if dim is an exact
dimension function on graded modules, and if R is graded dim-Macaulay,
then we say A is graded Auslander dim-Macaulay.

w xAccording to Ye1, Theorem 3.9 , any two graded dualizing complexes
s Ž .w xR , R satisfy R ( R m A m n , for an automorphism s and integers1 2 2 1 A

n, m. It follows that R is graded Auslander iff R is so. In particular, if A1 2

is graded Gorenstein, then A is graded Auslander]Gorenstein in the
usual sense iff it is graded Auslander in the sense of Defini-
tion 4.12.

Taking cohomologies in the previous corollary we get:

COROLLARY 4.13. Suppose A is graded Auslander. Then Cdim is symmet-
ric on graded modules. That is to say, if M is a graded A-bimodule, finitely

generated on both sides, then Cdim M s Cdim T M.A A

If A is graded Auslander we have a bound on Krull dimension of graded
modules:

THEOREM 4.14. Suppose A is graded Auslander. Then

Kdim M F Cdim M s sup q N H qR G M / 0 - `� 4m

for all finitely generated graded A-modules M.

� < qProof. By Theorem 4.7, if M / 0, we have Cdim M s sup q H R G Mm

4/ 0 . Next for a finitely generated graded A-module M the Krull dimen-
sion is the same when computed in GrMod A and in Mod A. By the
graded variant of Corollary 2.18 we get Kdim M F Cdim M, since clearlyR

d s 0.0

LEMMA 4.5. Let A ª B be a finite homomorphism of noetherian con-
nected graded k-algebras, with augmentation ideals m , m . Assume AA B

satisfies condition x . Then there is a functorial isomorphism

R G M ( R G Mm mB A

qŽ .for M g D GrMod B .

Proof. For any homomorphism A ª B of graded algebras there is a
Ž . wfunctorial morphism R G M ª R G M in D GrMod A . By AZ, Lemmam mB A

x p p8.2 , the extra assumptions guarantee that H R G M ª H R G M ism mB A

bijective for all p.
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w xThe following theorem is a generalization of Jo1, Theorem 3.3 .

THEOREM 4.16. Let A ª B be a finite homomorphism of graded k-alge-
bras and let R be a balanced dualizing complex o¨er A. Then:A

Ž .1 B has a balanced dualizing complex R .B

Ž . Ž e.2 There is a morphism Tr : R ª R in D GrMod A , whichBr A B A

Ž . Ž .satisfies conditions i and ii of Theorem 3.2.

w x TProof. From VdB, Theorem 6.3 we know that A and A satisfy x ,
and G and G T s G have finite cohomological dimensions. So byTm m mA A A

Lemma 4.15 the same is true for B. Thus B has a balanced dualizing
Ž .Ucomplex R ( R G B .B m B

Ž e. Ž .UThe morphism A ª B in D GrMod A induces a morphism R G Bm A

Ž .U Ž e. Ž .U Ž .Uª R G A , also in D GrMod A . But R G B ( R G B and wem m mA A B

get Tr : R ª R . The isomorphism of functors R G ( R G T ofBr A B A m mA A

w xVdB, Corollary 4.8 shows that Tr is the same when calculated on theBr A

right, i.e., using R G T .m A

Ž .Condition i of Theorem 3.2 is a consequence of local duality. To verify
Ž . Ž e.condition ii we again view A ª B as a morphism in D GrMod A . By

w xVdB, Theorems 4.7 and 5.1 we get a commutative diagram
( (U U Ue

6 6

Ž . Ž . Ž Ž . .eR G B R G B R Hom B , RG Bm m B me eB B B

6 66

( (U U Ue

6 6

Ž . Ž . Ž Ž . .eR G A R G A R Hom A , RG A .m m A me eA A A

w xFinally by VdB, Theorem 7.1
U U Ue

TR G A ( R G A m R G A ,Ž . Ž .Ž .m m meA A A

and of course the same for B.

Applying the graded variant of Proposition 3.9 we obtain the following
corollary.

COROLLARY 4.17. Let A and B be as in Theorem 4.16

Ž .1 There is a functorial isomorphism

R Homgr M , R ( R Homgr M , RŽ . Ž .B B A A

Ž .for all M g D GrMod B .
Ž .2 If A is graded Auslander then so is B.

Ž .3 Cdim M s Cdim M for M g GrMod B.A B

Ž .4 If A is graded Auslander GKdim-Macaulay then so is B.

Ž .5 Suppose A ª B is surjectï e. If A is graded Auslander Kdim-
Macaulay, then so is B.
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The next three propositions show that the graded Auslander property
can be transferred from one algebra to a related algebra.

PROPOSITION 4.18. Suppose A has a balanced dualizing complex. Let dim
stand for either Kdim or GKdim.

Ž .1 Let a , b be graded ideals. If the quotient algebras Ara and Arb
Ž .are graded Auslander resp. and graded dim-Macaulay , then so is Arab.

Ž .2 Let a be a nilpotent graded ideal of A. If Ara is graded Auslander
Ž .resp. and graded dim-Macaulay then so is A.

Ž .3 If for e¨ery minimal graded prime ideal p the quotient algebra Arp
Ž .is graded Auslander resp. and graded dim-Macaulay , then so is A.

Ž . gr Ž .Proof. 1 As usual we write D [ R Hom y, R where R is theA

balanced dualizing complex. We may assume ab s 0. Given a finitely
generated graded module M consider the exact sequence 0 ª b M ª M

ª Mrb M ª 0, and note that b M is an Ara-module. For any i there is
i Ž . i i Ž .an exact sequence H D Mrb M ª H DM ª H D b M . Since Ara and

Arb have the graded Auslander property, the subquotients of
i Ž . i Ž .H D Mrb M and H D b M have Cdim no more than i. Observe that

here we are using Corollary 4.17. Hence by the long exact sequence of
duality, submodules of H iDM have Cdim no more than i. The assertion
about the Macaulay property is clear.

Ž . Ž .2 Use part 1 and induction.
Ž . Ž .n3 Let p , . . . , p be the minimal prime ideals of A. Then Ł p1 m i i

Ž . Ž .s 0 for some n, and we can use parts 1 and 2 .

PROPOSITION 4.19. Let A ª B be a finite homomorphism of connected

graded algebras, and assume B ( A [ L as graded A-bimodules. If B has a

balanced dualizing complex then so does A.

Proof. Let M be a finitely generated graded A-module. Then by
Lemma 4.15 we get

R G B m M ( R G B m M ( R G M [ R G L m M .Ž . Ž . Ž .m A m A m m AB A A A

By Theorem 4.5 and Lemma 4.4 applied to B, we see that the graded
i Ž .B-module H R G B m M is right bounded and vanishes for large i.m AB

Hence the same is true for the A-module H iR G M. Now apply Theo-m A

rem 4.6

We do not know if under the assumptions of the proposition above the
Auslander property can be transferred from B to A. However, as shown to
us by Van den Bergh this is true in a special case:
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PROPOSITION 4.20. Let G be a finite group of order prime to char k,
acting on B by graded k-algebra automorphisms, and let A [ BG be the fixed

ring. If B is graded Auslander then so is A.

Proof. Given a finitely generated A-module M and a graded AT-sub-
q Ž . p Ž .Tmodule N ; Ext M, R we want to prove that Ext N, R s 0 for allA A A A

� < Ž . 4p - q. Let L [ b g B Ý g b s 0 , so B s A [ L. We have isomor-g g G

phisms of graded AT-modules

Ext q M , R [ Ext q L m M , RŽ . Ž .A A A A A

( Ext q B m M , R ( Ext q B m M , RŽ . Ž .A A A B A B

q Ž .that respect the G-action. Note that G acts trivially on Ext M, R .A A
T q Ž .Consider the graded B -module N ? B ; Ext B m M, R . Clearly N ? BB A B

s N q N ? L. But if

n s n l g N l N ? LŽ .Ý i i

i

with n g N and l g L, theni i

< <y1 < <y1
n s G g n l s n ? G g l s 0.Ž .Ý Ý Ý Ýi i i iž /

ggG i i ggG

We conclude that N ? B s N [ N ? L as graded AT-modules. Therefore

Ext p
T N , R [ Ext P

T N ? L, RŽ . Ž .A A A A

( Ext p
T N ? B , R ( Ext p

T N ? B , R s 0.Ž . Ž .A A B B

5. GRADED ALGEBRAS WITH SOME
COMMUTATIVITY HYPOTHESIS

In this section we continue the discussion of balanced dualizing com-
plexes over connected graded noetherian k-algebras, but now we look at
algebras which have some commutativity hypothesis, like PI, FBN, or
enough normal elements. The main result here is:

THEOREM 5.1. Let A be a noetherian connected graded k-algebra. Sup-
pose t g A is a homogeneous normal element of positï e degree, and let

Ž .B [ Ar t .

Ž .1 If B has a balanced dualizing complex, then so does A.

Ž .2 If in addition B is graded Auslander, then so is A.
Ž . Ž .3 If in addition B is graded Kdim resp. GKdim -Macaulay, then so

is A.
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The ‘‘classical’’ case of this theorem i.e., when B is Gorenstein and t is
Ž . w x Ž .a regular element i.e., a non-zero-divisor , is Lev, Theorem 3.6 . Part 1

wof the theorem is a trivial consequence of Theorems 4.5 and 4.6, and AZ,
xTheorem 8.8 .

Ž . Ž .The proof of parts 2 and 3 appears after a series of lemmas. In these
Ž Ž ..lemmas we assume that A has a balanced dualizing complex by part 1

and B is graded Auslander. The modules M, N, . . . will be finitely gener-
ated graded by default. By Proposition 4.18 we can assume A is prime,
hence t is a regular element. The same proposition tells us that

Ar t n is graded Auslander for all n G 1. 5.2Ž . Ž .

Ž .We denote by D the duality functor R Hom y, R , where R is theA

balanced dualizing complex of A. Recall that according to Theorem 4.7,
yi Ž i .U � < yi 4H DM ( R G M . By definition Cdim M s sup i H DM / 0 , so triv-m

ially

� X X 4Cdim M F max Cdim M , Cdim MrM 5.3Ž .

for all M
X
; M.

LEMMA 5.4. If M is t-torsion-free then Cdim M s Cdim MrtM q 1. If

d s Cdim M then HydDM is t-torsion-free.

Ž .Proof. Let s be the automorphism of A such that t ? a s s a ? t, and
let s

M be the corresponding twisted module. Then we have an exact
sequence

y1 t?s 6

0 ª M yl M ª MrtM ª 0,Ž .

i Žs
y1

Ž ..where l is the degree of t. It is easy to see that H D M yl (
Ž i .sy1

Ž .H DM l , so there is a long exact sequence

?t y1si i i iq16

H D MrtM ª H DM H DM l ª H D MrtM . 5.5Ž . Ž . Ž . Ž . Ž .

iq1 Ž .If H D MrtM s 0 then by the graded Nakayama Lemma we get
H iDM s 0. Therefore

Cdim MrtM F Cdim M F Cdim MrtM q 1.

yd Ž .Now let d s Cdim M. We need to show that H D MrtM s 0. If not,
then Cdim MrtM s d, and hence also Cdim Mrt nM s Cdim t ny1Mrt nM

Ž .ns d for all n G 1. According to Proposition 4.18 the algebra Ar t has
the graded Auslander property. This implies that

Cdim HydD t ny1Mrt nM s d andŽ .

Cdim Hydq1D Mrt ny1M F d y 1.Ž .
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Looking at the exact sequence

0 ª HydD Mrt ny1M ª HydD Mrt nMŽ .Ž .
f

yd ny1 n ydq1 ny16

ª H D t Mrt M H D Mrt MŽ . Ž .

we see that f cannot be an injection. Therefore

HydD Mrt ny1M m HydD Mrt nM ; HydD M .Ž . Ž .Ž .

But this is true for all n G 1, contradicting the noetherian property of
yd Ž . d Ž . Ž .H D M . The upshot is that H D MrtM s 0. Taking i s yd in 5.5

dwe conclude that H DM is t-torsion-free.

LEMMA 5.6. Let N be the t-torsion submodule of M. Then

� 4Cdim M s max Cdim N , Cdim MrN .

Proof. Let d be the right hand side. Trivially Cdim M F d holds.
Assume Cdim M - d. Dualizing the exact sequence 0 ª N ª M ª MrN

ª 0 we obtain a long exact sequence

??? ª H iD MrN ª H iDM ª H iDN ª H iq1D MrNŽ . Ž .

ª H iq1DM ª ???

yd Ž .and taking i s yd y 1 we see that H D MrN s 0, so Cdim MrN

- d. Hence Cdim N s d. Also taking i s yd we see that HydDN
ydq1 Ž . yd; H D MrN . Now H DN is t-torsion, yet by Lemma 5.4,

ydq1 Ž . ydH D MrN is t-torsion-free. We conclude that H DN s 0, which is
a contradiction.

� 4LEMMA 5.7. Cdim M s max Cdim L, Cdim MrL for e¨ery L ; M.

Ž .Proof. By 5.3 it remains to prove G . Let N be the t-torsion
Ž .submodule of M. By 5.2 we have Cdim N G Cdim N l L. On the other

� 4hand by Lemma 5.6, Cdim M s max Cdim N, Cdim MrN and Cdim L s
� 4max Cdim N l L, Cdim LrN l L . Hence it suffices to prove that

� 4Cdim MrN s max Cdim LrN l L, Cdim MrL . So we may assume M s

MrN is t-torsion-free.
If P [ MrIL is also t-torsion-free then we get a short exact sequence

0 ª LrtL ª MrtM ª PrtP ª 0.

Hence the assertion follows from Lemma 5.4.
In general let L

X
> L be such that L

X
rL is the t-torsion submodule of

MrL. So t nL
X
; L for some n. By Lemma 5.4,

Cdim L
X
rL F Cdim L

X
rt nL

X
s Cdim L

X
y 1
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and hence, from the long exact sequence of duality, we get Cdim L s

Cdim L
X. Applying the previous paragraph and Lemma 5.6 we have

� X X 4Cdim M s max Cdim L , Cdim MrL

� X 4s max Cdim L, Cdim MrL

� X X 4s max Cdim L, Cdim LrL, Cdim MrL

� 4s max Cdim L, Cdim MrL

and we finish the proof.

LEMMA 5.8. Suppose t n kills the t-torsion submodule of M. Then

Cdim M F Cdim Mrt nM q 1.

Proof. Let N be the t-torsion submodule of M and P [ MrN. Then
n n n Žt M ( t P is a t-torsion-free submodule of M and Prt P ( Mr N [
n .t M . By Lemmas 5.4 and 5.6,

� 4 � n 4Cdim M s max Cdim N , Cdim P s max Cdim N , Cdim Prt P q 1 .

On the other hand by lemma 5.7,

n � n 4Cdim Mrt M s max Cdim N , Cdim Prt P .

It remains to combine these equalities.

Ž .Proof of Theorem 5.1. As mentioned above part 1 is a consequence of
w xTheorems 4.5 and 4.6, and AZ, Theorem 8.8 .

Ž . yi2 Recall that the Auslander condition says that if N ; H DM then
Cdim N F i. We can assume A is prime and t is regular. By Lemma 5.7 it

yi Ž .suffices to prove that Cdim H DM F i for all i. According to 5.2 the
inequality holds for t-torsion modules, so using the long exact sequence of
duality we may assume that M is t-torsion-free.

Choose n such that t n kills the t-torsion submodule of HyiDM. The
short exact sequence

t n? n ns s n6

0 ª M M nl ª Mrt M nl ª 0Ž . Ž . Ž .

gives rise to a long exact sequence

s n nt ?yi yi6

??? ª H DM ynl H DM ª PŽ . Ž .

s n
yiq1 ns H D Mrt M ynl ª ??? .Ž . Ž .Ž .

Since Mrt nM is t-torsion, P is also t-torsion, and every submodule of P
yi Ž .has Cdim F i y 1, So according to Lemma 5.8, Cdim H DM F i y 1 q

1 s i.
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Ž . Ž n.3 Assume B is graded GKdim-Macaulay. Since Ar t is graded
Ž .GKdim-Macaulay for n G 1 by Proposition 4.18 , it suffices to show that

Cdim M s GKdim M for t-torsion-free modules. We know that in this
case GKdim M s GKdim NrtM q 1, and by Lemma 5.4 this is true also
for Cdim M.

Finally assume B is graded Kdim-Macaulay. Again we need only con-
sider M which is t-torsion-free. It is clear that Kdim M G Kdim MrtM q 1.
Hence it follows from Lemmas 5.4 and 5.7 that Kdim M G Cdim M. But
by Theorem 4.14, Kdim M F Cdim M.

EXAMPLE 5.9. Let us consider a simple case of Theorem 7.1. Let
w xA s B t where t is a central variable of degree 1. Let R be the balancedB

dualizing complex of B. Then the balanced dualizing complex of A is
nothing but

1 w x w x w xR s R m V 1 ( R t y1 1 ,Ž .A B kw t x kw t xr k B

1 w x w xŽ . w xwhere V s k t ? dt ( k t y1 as graded k t -modules. This followskw t xr k

w xfrom VdB, Theorem 7.1 , which states that if B, C are noetherian con-
nected graded k-algebras with balanced dualizing complexes R and R ,B C

respectively, and if B m C is noetherian, then R m R is a balancedB C

dualizing complex over B m C. By Theorem 5.1, A is graded Auslander
Ž .and Kdim resp. GKdim -Macaulay if and only if B is.

COROLLARY 5.10. Let A be a connected graded k-algebra with a balanced

dualizing complex. Suppose that e¨ery graded prime quotient Arp satisfies one

of the following conditions:

Ž . Ž Ž .i Arp is graded Auslander resp. and graded Kdim or GKdim -
.Macaulay ; or

Ž .ii Arp has a normal element of positï e degree.

Ž Ž . .Then A is graded Auslander resp. and graded Kdim or GKdim -Macaulay .

Proof. Use Proposition 4.18, Theorem 5.1, and induction on Kdim A.

Recall that A has enough normal elements if every graded prime
Ž .quotient Arp except for p s m contains a normal element of positive

degree. By Corollary 5.10, a noetherian connected graded algebra with
enough normal elements is Auslander and GKdim-Macaulay. In the rest of
this section we generalize this statement.

COROLLARY 5.11. Let A and B be noetherian connected graded k-alge-
bras. Assume A has a balanced dualizing complex and is graded Auslander
Ž Ž . .resp. and graded Kdim or GKdim -Macaulay , and B has enough normal
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elements. Then A m B is a noetherian connected graded k-algebra with a
Žbalanced dualizing complex, and it is graded Auslander resp. and graded

Ž . .Kdim or GKdim -Macaulay .

Proof. We first prove that A m B is noetherian by induction on Kdim B.
� 4Suppose p , . . . , p is the complete set of minimal graded primes of1 n

B. Then some product Ł t p is zero. For any s G 1 let W [is1 n si

Ł sy1p rŁ s p , where W s Brp , and let B s Brp . Since W is ais1 n is1 n 1 n s n si i 1 s

finitely generated B -module, A m W is a finitely generated A m B -s s s

module. Hence it suffices to show that each A m B is noetherian. Thiss

reduces to the case when B is prime. Hence we may assume B has a
regular normal element t of positive degree. It is obvious that 1 m t is a

Ž .regular normal element in A m B. By induction hypothesis, A m Br t is
w xnoetherian, and therefore A m B is noetherian by ATV, Theorem 8.2 .

The graded Auslander and Macaulay properties follow from the same
inductive procedure and Theorem 5.1

w xIn SZ, Theorem 3.10 it was shown that a connected graded PI algebra
Ž .of finite injective dimension i.e., a Gorenstein algebra is graded Auslan-

w xder]Gorenstein and graded GKdim-Macaulay. This was extended in Zh
Žto an algebra A having enough normal elements. Corollary 5.11 when

.A s k generalizes these theorems by eliminating the Gorenstein condi-
tion. We extend the result further in Theorems 5.13 and 5.14 below.

DEFINITION 5.12. Let R be a balanced dualizing complex over A.

Ž .1 We say two graded A-modules M and N are similar if there
gr Ž . gr Ž .are isomorphisms M ( N and R Hom M, R ( R Hom N, R inA A

Ž .D GrMod k .

Ž .2 The algebra A satisfies the similar submodule condition if every
nonzero, m-torsion-free, finitely generated, graded A-module M has

X X Ž .graded submodules N m N ; M with N similar to N yl for some
l ) 0.

bŽ .We remark that two complexes M, N g D GrMod A are isomorphic inf

Ž .D GrMod k if and only if they have equal Hilbert functions, namely
Ž i . Ž i .rank H M s rank H N for all i, j g Z. This definition of a similark j k j

w xsubmodule condition is equivalent to the definition given in Zh, Section 2
when A is AS-Gorenstein, which is the case considered there. Also, as

w xmentioned in Zh, Sect. 2 there are algebras which do not satisfy the
similar submodule condition.
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THEOREM 5.13. Assume A is a noetherian connected graded k-algebra

and satisfies one of the following:

Ž .i A is a PI algebra.

Ž .ii A is graded-FBN.

Ž .iii A has enough normal elements.

Then A has a balanced dualizing complex, and the similar submodule

condition holds.

Note that if A is PI, then A is graded FBN and has enough normal
elements.

Proof. The existence of a balanced dualizing complex follows Theorem
w x4.6, together with AZ, Theorems 8.8 and 8.13 . The statement about the

wsimilar submodule condition is proved like in Zh, Sect. 2, first paragraph,
xand Proposition 2.3 .

w xWe now prove a generalized version of Zh, Theorem 3.1 .

THEOREM 5.14. Let A be a noetherian connected graded k-algebra which

has a balanced dualizing complex R and satisfies the similar submodule

condition. Then

Ž .1 A is graded Auslander.
Ž .2 A is graded Kdim and GKdim-Macaulay. More precisely

Cdim M s Kdim M s GKdim MR

for e¨ery finitely generated left or right A-module M.

w x Ž .Proof. First we observe that Zh, Lemma 2.2 holds same proof , and
hence Kdim M G GKdim M and GKdim M - ` for every finitely gen-

iŽ .erated graded A-module M. Therefore, replacing Ext y, A with
i Ž . w xExt y, R , the proof of Zh, Theorem 3.1 can be copied verbatim. Let usA

just mention the key point of the proof. We prove by induction on
Ž TGKdim M that for every finitely generated graded A-module resp. A -

.module M:

Ž . Ž .a j M s yGKdim M.R

Ž . j Ž . Ž .b GKdim Ext M, R s GKdim M, where j s j M .A R

Ž . Ž . i Ž .c For every j M F i F 0 one has GKdim Ext M, R F yi.R A

This implies that A is graded Auslander and graded GKdim-Macaulay. By
w xZh, Lemma 2.2 , Kdim M G GKdim M s Cdim M, and by Theorem 4.14,
Kdim M F Cdim M. Hence A is graded Kdim-Macaulay.
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Theorem 0.6 is an immediate consequence of Theorems 5.13 and 5.14.
Another consequence is Proposition 0.9 which we now prove.

Proof of Proposition 0.9. If A is connected graded, i.e., A s k, the0

assertion follows from Theorems 5.13 and 5.14. Now assume A is not
connected. Let B [ k q A , which is connected. Since A and B differG1

by a finite rank k-module, B is noetherian. It remains to verify the
following statements.

Ž .a If M is a finitely generated graded A-module, then Kdim M sA

Kdim M and GKdim M s GKdim M.B A B

Ž .b If A has enough normal elements, then so does B.
Ž .c If A is graded FBN, then so is B.
Ž .a The statement about GKdim is obvious because GKdim is deter-

Ž wmined by the degree of the Hilbert function of M see Zh, Lemma
Ž .x.2.2 1 . Next we consider Kdim. Clearly Kdim M s 0 if and only if M isA

a finitely generated k-module, if and only if Kdim M s 0. For higherB

dimension we consider the quotient category QGr A [ GrMod ArM ,0
Ž .where M s M Kdim is the localizing subcategory consisting of Kdim s 00 0

Ž w x.modules torsion modules in the terminology of AZ . For any M g

GrMod A one hasf

Kdim M s Kdim M s Kdim M q 1.A GrMod A QGr A

Now since A and B differ by a finite rank k-module, QGr A is equivalent
w xto QGr B by AZ, Proposition 2.5 , so Kdim M s Kdim M.QGr A QGr B

Ž .b Let p be a graded prime ideal of B which is not m s B .B G1

Then Ap A and p differ by a finitely generated k-module, and hence
GKdim ArAp A s GKdim Brp. Let q be a graded prime of A minimal
over Ap A such that GKdim Arq s GKdim Brp. Then the map Brp ª

Arq is injective, and bijective in positive degrees. Thus normal elements of
positive degree in Arq are also normal elements in Brp.

Ž . Ž .c The proof is similar to b and we leave it to the reader.

6. NOETHERIAN CONNECTED FILTRATIONS

In this section we use filtrations to transfer results of Sections 4]5 on
connected graded algebras to non-graded algebras. Throughout the section
A denotes a noetherian k-algebra.

� 4Suppose a k-module M is given an increasing filtration F s F Mn ng Z

with F F M s 0 and D F M s M. The Rees module is the gradedn n n n

w xk t -module
F n w y1 xRees M [ F M ? t ; M t , t ,[ n

ngZ
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where t is a central indeterminate. It is easy to check that

Rees F M r t y 1 ? Rees F M ( MŽ . Ž . Ž .

and

Rees FM rt ? Rees F M ( gr F M s F MrF M.Ž . Ž . [ n ny1
ngZ

� 4Now let F s F A be a filtration of A such that F A ? F A ;n ng Z n m

F A. The graded k-algebra Rees F A is called the Rees algebra.nqm

DEFINITION 6.1. If the Rees algebra Rees F A is a noetherian con-
nected graded k-algebra then F is called a noetherian connected filtration.

Observe that Rees F A is connected graded iff F A ( k, F A s 0, and0 y1

rank F A - `. If Rees F A is noetherian then so is the associated gradedk n
F w x Falgebra gr A. By ATV, Theorem 8.2 the converse is also true}if gr A

is noetherian then so is Rees F A.
� 4A filtration F A on an A-module M with F A ? F M ; F M givesn n m nqm

F F � 4a graded module Rees M over Rees A. We say F M is a good filtrationn
F Ž F .if Rees M is a finitely generated Rees A -module.

Ž .The main result of this section is the following theorem. Part 1 is due
w xto Van den Bergh VdB, Theorem 8.6 , but there was a subtle flaw in his

statement: the shift by y1 was missing.

THEOREM 6.2. Let F be a noetherian connected filtration on A and let
˜ FA [ Rees A.

˜ ˜Ž .1 If A has a balanced dualizing complex R then

˜ w xR [ A m R m A y1˜ ˜Ž .A A

is a rigid dualizing complex o¨er A.
˜Ž .2 If R is graded Auslander then R is Auslander.

˜ ˜Ž .3 Suppose R is graded Auslander. If R is graded GKdim-Macaulay

then R is GKdim-Macaulay.

The proof comes after this lemma.
˜ ˜ ˜w x Ž .Consider the functor p : GrMod k t ª Mod k, M ¬ Mr t y 1 M.

˜ y1w xWrite A [ A t, t .t

Ž .LEMMA 6.3. 1 The functor p is exact.

˜ ˜ ˜Ž .2 If I g GrMod A is injectï e then p I g Mod A is injectï e.

Ž .3 There is a functorial isomorphism

˜ ˜ gr ˜ ˜R Hom p M , p N ( p R Hom M , NŽ . Ž .˜A A

˜ ˜ b ˜Ž .for M, N g D GrMod A .f
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Ž . Ž .Proof. 1 , 2 p is a composition of the functors ‘‘localization by t’’
˜ ˜Ž .y : GrMod A ª GrMod A and ‘‘taking degree 0 component’’t t

˜Ž .y : GrMod A ª Mod A, both of which are exact. The second is even0 t

˜an equivalence, so injectives go to injectives. Since A is noetherian at

˜ ˜standard argument shows that the A -module I is graded-injective.t t

gr ˜ ˜Ž . Ž .3 There is a functorial morphism c : p R Hom M, N ªÃ

˜ ˜ ˜Ž .R Hom p M, p N . Fixing N these are way-out right contravariant func-A

˜ w Ž .xtors of M. By RD, proposition I.7.1 iv }reversed}it’s enough to check
˜ ˜to that c is an isomorphism when M s A, and then it’s trivial.

Ž .Proof of Theorem 6.2. 1 By Proposition 4.8 and the graded version of
q ˜ w x ŽCorollary 3.6 each cohomology module H R is k t -central cf. Remark 6.6

.below . Define

e
˜ ˜ ˜ ˜ ˜R [ A m R m A g D GrMod A .Ž .˜ ˜ ž /t t A A t t

˜ ˜ ˜ ˜ ˜ ˜We see that the homomorphisms A m R ª R and R m A ª R are˜ ˜t A t A t t

quasi-isomorphisms.
˜ ˜Because A ª A s p A is flat we also have

˜ ˜ ˜ew x w xA m R y1 ( R y1 m A ( R g D Mod A .Ž .˜ ˜A A

˜ ˜ w xConsidering only A-modules we have R ( p R y1 , so by Lemma 6.2, R

has finite injective dimension and finitely generated cohomologies over A.
T Ž .By symmetry this is true also over A . Part 3 of the lemma implies that

˜Ž . Ž .TR Hom R, R ( p A s A, and likewise R Hom R, R s A. We con-A A

clude that R is dualizing.
˜ ˜Ž .Now let’s prove R is rigid. There is a functorial isomorphism p M ( Mt 0

˜ e 2w xfor M g GrMod k t , and the algebra A is Z -graded. Therefore we get

e ˜ ˜ ˜ ˜ ˜ ˜eA m R m R ( A m R m R m A ( R m RŽ . Ž . Ž . Ž .˜ ˜ ˜Ž .A A A t t0 0

˜ ˜( R m R .ž /t t Ž .0, 0

˜ eŽ .The algebra A is strongly Z-graded, and its degree 0 component ist

e
e y1 y1 e˜ w x w xA ( A s, s ( k s, s m A ,Ž .t 0

y1 ˜ eŽ . ewhere s [ t m t . Applying A m y to˜t A

˜ gr ˜ ˜ ˜eR ( R Hom A , R m RŽ .Ã

we obtain

˜ gr ˜ ˜ ˜eR ( R Hom A , R m R˜ ž /t Ž A . t t tt
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and taking degree 0 components we get

gr ˜ ˜w x eR 1 ( R Hom A , R m R˜ ž /ž /Ž A . t tt 0 0

w y1 x w x w xy1 e( R Hom A , k s, s m R 1 m R 1 .Ž .Ž .kw s , s xm A

But
sy1y1 y1 y16

w x w x w xk ( k s, s k s, s g D Mod k s, s ,Ž . Ž .

and A is a finitely presented Ae-module, so

w y1 x w xy1 e eR Hom k m A , k s, s m M ( R Hom A , M y1Ž .Ž .kw s , s xm A A

for any complex of Ae-modules M.

˜ ˜Ž .2 Let M be a t-torsion-free finitely generated graded A-module.
We claim that

˜ ˜j p M s j M q 1. 6.4Ž .Ž . ˜ ˜R ; A R ; A

First by Lemma 6.3 we get for any q,

yqq1 ˜ yq ˜ ˜Ext p M , R ( p Ext M , R , 6.5Ž .Ž . Ž .˜A A

˜ ˜ ˜ ˜Ž .so j p M G j M q 1. Now take q [ yj M and write N [˜ ˜ ˜ ˜R; A R; A R; A

yq ˜ ˜ ˜ l ˜Ž .Ext M, R . If p N s 0 then t N s 0 for some l ) 0. But in the ExtÃ

˜ Ž .spectral sequence converging to M see proof of Theorem 2.10 the
yq ˜ ˜ l l ˜Ž .Tdominant term is Ext N, R which is killed by t . We get Cdim t M -˜˜ RA

˜ l ˜ ˜ Ž .Cdim M s q, which is absurd since t M ( M yl .R̃

Given finitely generated A-modules M ; N, take any good filtration
˜ F ˜ F� 4F N , and let F M [ M l F N, M [ Rees M, and N [ Rees N.n n n

˜ ˜Since M and N are t-torsion-free we see that

˜ ˜Cdim M s Cdim M y 1 F Cdim N y 1 s Cdim N.˜ ˜R R R R

yq ˜ F ˜Ž .Finally let L [ Ext M, R . Then, with M [ Rees M and L [A
qy1 ˜ ˜ ˜Ž .Ext M, R , we see that j L G j L q 1 G yq, verifying the Aus-˜ ˜˜ R; A R; AA

lander condition on one side. By symmetry it holds also on the other side.

Ž . Ž .3 By the proof of part 2 , given a finitely generated A-module M
˜ ˜ Fone has Cdim M q 1 s Cdim M with M [ Rees M w.r.t. any˜ ˜R; A R; A

˜ y1� 4 w xgood filtration F M . But because M ( M m k t, t we also haven t

˜ ˜GKdim M q 1 s GKdim M s GKdim M.˜ ˜A A t At
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Remark 6.6. It is not too hard to show that R could be chosen to be a
w xk t -central complex of graded A-bimodules.

Observe that the rigid dualizing complex R has H qR s 0 for q ) 0,
0 ˜ q ˜since H R is t-torsion and H R s 0 for q ) 0.

COROLLARY 6.7. Suppose A is connected graded and R is a balanced

dualizing complex o¨er A. Then R is a rigid dualizing complex o¨er A in the

ungraded sense.

Proof. First let us note that for any graded A-module M we can define
a filtration F M [ [ M . Then we have a functorial isomorphism ofn iiF n ,F 6

w x w xgraded A t -modules Rees M M t .
˜ ˜w xIn particular we get A ( A t , so by Example 5.9 we know that R s

˜ ˜w xŽ .w x w xR t y1 1 is the balanced dualizing complex of A. But then p R y1 s
ew xŽ . Ž . Ž .p R t y1 ( R in D Mod A , and this is rigid by Theorem 6.2 1 .

The next corollary implies Theorem 0.7.

COROLLARY 6.8. Suppose A has a noetherian connected filtration F, and
Flet A [ gr A.

Ž .1 If A has a balanced dualizing complex R, then A has a rigid

dualizing complex R.
Ž .2 If R is graded Auslander then R is Auslander.
Ž .3 If R is also graded GKdim-Macaulay, then R is GKdim-Macaulay.

˜ FProof. According to Theorem 5.1, the Rees algebra A s Rees A

inherits these properties from A. And by Theorem 6.2 they pass to A.

COROLLARY 6.9. Suppose A has a noetherian connected filtration F, and
FA [ gr A satisfies either of the following:

Ž .i A is a PI algebra.
Ž .ii A is graded-FBN.
Ž .iii A has enough normal elements.

Then A has an Auslander, GKdim-Macaulay, rigid dualizing complex.

Proof. Combine Corollary 6.8 and Theorems 5.13 and 5.14.

Here are some examples of algebras which admit noetherian connected
filtrations.

EXAMPLE 6.10. If A is a noetherian connected graded algebra, then
the filtration F A s [ A is a noetherian connected filtration.n iiF n

EXAMPLE 6.11. Suppose A is generated by elements x , . . . , x , and for1 n

every i / j there is some relation

x x s q x x q a x q b x q c 6.12Ž .j i i , j i j i , j i i , j j i , j
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with q , a , b , c g k. Let V [ k q Ýk ? x ; A and define a filtrationi, j i, j i, j i, j i

F A [ V n. Then gr F A is a quotient of the skew polynomial algebran

w xk x , . . . , x , so F is a noetherian connected filtration. Furthermore,q 1 n
F Ž .gr A has enough normal elements namely the x ; so Corollary 6.9 holds.i

Ž .It is easy to check that the relations 6.11 are satisfied in the following
classes of algebras:

Ž .i Commutative affine algebras.

Ž .ii Weyl algebras, enveloping algebras of finite dimensional Lie
algebras and their quotients.

Ž . w xiii Most classes of quantum algebras listed in GL .

Recall that a homomorphism f : A ª B is called finite if B is a finite
Ž .left and right A-module. f is centralizing if B s A ? Z A . Thus f isB

Ž .finite centralizing iff there exist b , . . . , b g Z A such that B s ÝA ? b .1 m B i

LEMMA 6.13. Suppose f : A ª B is a finite centralizing homomorphism

and F is a noetherian connected filtration on A. Then there is a noetherian

connected filtration F on B such that f preser̈ es the filtrations and
FŽ . F FRees f : Rees A ª Rees B is finite.

Proof. Let b , . . . , b be elements of B which commute with A and1 m

B s ÝA ? b . Choose elements a g A such that b b s Ý a b . Leti i, j, l i j l i, j, l l

n ) 0 be large enough such that a are in F A. Define0 i, j, l n0

F B [ F A ? 1 q F A ? b ; B.Ýn n nyn i0
i

Ž .Clearly this is a connected filtration. Since the elements 1, b , . . . , b1 m

determine a surjective bimodule homomorphism

m
F F FRees A [ Rees A yn ¸ Rees BŽ . Ž .0

Fwe see that Rees B is noetherian.

EXAMPLE 6.14. If A is an affine k-algebra finite over its center, then
w xthere is a finite centralizing homomorphism k t , . . . , t ª A from a1 n

commutative polynomial algebra. By the lemma and Example 6.10, A has
a noetherian connected filtration. Thus A satisfies the assumptions of
Corollary 6.9.

EXAMPLE 6.15. Here is an example of a prime PI algebra A which is
not finite over its center yet has a noetherian connected filtration
Ž w x.Schelter’s Example, Ro, p. 492, Exercise 27 . Let t, l , l be commuting1 2
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indeterminates of degree 1. Define

˜ ' 'C [ Q 2 , 3 , l , l , t1 2

˜ ' ' 'C [ Q 6 , t 2 q l , l , l 2 , t1 1 2 2

˜ ' ' 'C [ Q 6 , t 3 q l , l , l 2 , t2 1 2 2

˜ ˜ ˜ ˜'M [ C l q C l 2 ; C1 2 1 2

˜ ˜C M1
Ã [ .

˜ ˜M C2

˜ ˜Then A is a noetherian graded algebra and A is finite over k [ Q. The0
˜ Ž . � 4quotient A [ Ar t y 1 acquires a filtration F A , and if we modify it byn

setting F A [ Q this becomes a connected filtration. But A is not finite0

over its center.

QUESTION 6.16. Does e¨ery noetherian affine PI k-algebra admit a

noetherian connected filtration? This seems to be a hard question. A similar
Ž w x.one was posed by M. Lorenz o¨er ten years ago see Lo, p. 436 .

In Section 3 we found that rigid dualizing complexes are sometimes
functorial w.r.t. finite algebra homomorphisms, via the trace morphism.
Here is such an instance:

THEOREM 6.17. Let A ª B be a finite centralizing homomorphism. Sup-
pose A has a noetherian connected filtration F and gr F A has a balanced

dualizing complex. Then A and B ha¨e rigid dualizing complexes R and R ,A B

respectï ely, and the trace morphism Tr : R ª R of Definition 3.7Br A B A

exists.

Proof. By Lemma 6.13 we get a finite homomorphism of graded alge-
˜ F ˜ Fbras A s Rees A ª B s Rees B. So according to Theorem 4.16 the

trace morphism Tr : R ª R exists. Now apply the functor p and use˜ ˜ ˜ ˜Br B B A

Theorem 6.2.

For applications of this result see Proposition 3.9.
Let s be a k-algebra automorphism A. Recall that As is the invertible

Ž .bimodule with basis e satisfying e ? a s s a ? e. A noetherian connected
graded k-algebra B is called AS-Gorenstein if B satisfies x and the
bimodule B has finite injective dimension on both sides. Here AS stands
for Artin]Schelter. We say B is AS-regular if B is AS-Gorenstein and gl.
dim B - `.
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PROPOSITION 6.18. Suppose A has a noetherian connected filtration F and
F Ž .gr A is AS-Gorenstein resp. AS-regular . Then the following statements

hold.

Ž . Ž .1 A is a Gorenstein resp. regular algebra.

Ž . s w x2 The rigid dualizing complex of A is R s A n where n is an integer

and s is some k-algebra automorphism of A.

Ž . F Ž .3 If gr A is graded Auslander resp. and graded GKdim-Macaulay ,
Ž .then A is Auslander]Gorenstein resp. and Cohen]Macaulay in the sense of

w xBj .

Ž .4 Let B s Ara be any quotient algebra, M any B-module, and q an
q Ž .s Tinteger. Then the twisted module Ext M, A is a B -module.A

Ž . Ž . FProof. 1 , 2 Let n be the injective dimension of gr A, and let
˜ F ˜w xA [ Rees A. By Lev, Theorem 3.6 the injective dimension of A is

˜n q 1. Since A satisfies x it is AS-Gorenstein. So the balanced dualizing
s̃˜ ˜ ˜ Ž .w xcomplex of A is R s A d n q 1 for some graded automorphism s and˜

for some integer d. By Theorem 6.2 the rigid dualizing complex of A is
s̃ s̃ yny1˜ ˜ ˜w x w x Ž .R s p A n . Since A s H R this is k t -central; so s t s t. We see˜

s w xthere is an induced automorphism s of A and R s A n .
If gr A has finite global dimension, then so does A.

Ž . Ž .3 This follows from 2 and Theorems 5.1 and 6.2.

Ž . Ž .4 It follows from Theorem 6.17 and Proposition 3.9 1 that

sq qyn s qyn qynw xExt M , A ( Ext M , A n ( Ext M , R ( Ext M , R ,Ž . Ž . Ž .Ž .A A A B B

where R is the rigid dualizing complex of B.B

Ž . Ž .Example 2.3 shows that Proposition 6.18 2 , 3 might fail even if A is
Gorenstein. The next example shows that s could be nontrivial.

w x ² : ŽEXAMPLE 6.19. Let A be the quantum plane k x, y [ k x, y r yxq

. = 2y qxy for q g k with q / 1. The automorphism s in Proposition
Ž . Ž . Ž . y1 Ž w x.6.18 4 is s x s qx, s y s q y cf. Ye1, Examples 6.21 and 7.14 .

Consider the ideal I s A ? f ? A where f [ x y y, which is not normal. An
w x 2 Ž .easy computation shows that B ( k e with e s 0, and e ' x ' y mod I .

e 2 Ž . s Ž .Now consider the graded A -module N [ Ext B, A . One has N y2A
U e y1 Ž . T( B as A -modules, so N is killed by qx y q y s s f g A , and

hence N cannot be a BT-module.

² : Ž .EXAMPLE 6.20. Let A be the Weyl algebra k x, y r xy y yx y 1 .
Ž .nTake the standard filtration F A s k q kx q ky . Then the Rees alge-n

˜ 2 ˜bra A is generated by x, y, t with t central and xy y yx s t . A is an
Artin]Schelter regular algebra of global dimension 3, so its balanced
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s̃˜ ˜Ž .w xdualizing complex is A y3 3 for some automorphism s . Let B [˜
˜ 2Ž . wAr t , which is a commutative AS-Gorenstein algebra. As in Ye1,

xTheorem 7.18 we find that s s 1. Therefore the rigid dualizing complex˜
w x w xof A is A 2 . Observe that Cdim A s 2 s GKdim A. In Ye4 we prove

the more general statement that if C is any smooth integral commutative
Ž .k-algebra of dimension n, char k s 0, and A [ DD C is the ring of

w xdifferential operators, then the rigid dualizing complex of A is A 2n .

Suppose A has a noetherian connected filtration F. A two-sided good
� 4filtration on a bimodule M is a filtration F M such that F A ? F M ;n n m

F M, F M ? F A ; F M and Rees F M is a finitely generatednqm n m nqm

Ž F .Rees A -module on both sides.

PROPOSITION 6.21. Assume A has a noetherian connected filtration and

gr A has a balanced dualizing complex. Let R be the rigid dualizing complex

of A. If a bimodule M has a two-sided good filtration then

R Hom M , R ( R Hom T M , R .Ž . Ž .A A

˜ FProof. Let M [ Rees M. According to Corollary 4.17 there is an
isomorphism

˜ ˜ ˜ ˜TR Hom M , R ( R Hom M , RŽ . Ž .˜ ˜A A

e ˜ ˜Ž .in D GrMod A , where R is the balanced dualizing complex of A. Since
˜ w xM is k t -central we can apply the functor p .

ŽRecall the notion of weakly symmetric dimension function Definition
.2.20 .

COROLLARY 6.22. Assume A has an Auslander rigid dualizing complex,
and a noetherian connected filtration such that gr A has a balanced dualizing

complex. Then Cdim is weakly symmetric.

Proof. As can be readily verified, the class of A-bimodules which admit
two-sided good filtrations is closed under submodules, quotients, and finite
direct sums. Given a bimodule M which is a subquotient of A, Proposition

T6.21 applies and hence Cdim M s Cdim M.A A

We can now give the

Proof of Theorem 0.1. By Corollary 6.9, A has an Auslander rigid
dualizing complex R, and by Corollary 6.22, Cdim is weakly symmetricR

Ž .this also follows from the GKdim-Macaulay property . Now use Theorem
2.23.



YEKUTIELI AND ZHANG48

w xThe next theorem has the same conclusions as ASZ, Theorem 6.1 , but
our assumptions are much more focused. Let n be the prime radical of A.
Recall that n is said to be weakly in¨ariant w.r.t. an exact dimension
function dim if dim n m M - dim Arn s dim A for every finitely gener-A

Ž .ated A-module M with dim M - dim A and the same for right modules ;
w xcf. MR, 6.8.13 . A ring is called quasi-Frobenius if it is artinian and self

injective.

THEOREM 6.23. Let A be an Auslander]Gorenstein noetherian k-algebra

of injectï e dimension n. Assume A has a filtration such that gr A is an

AS-Gorenstein noetherian connected graded k-algebra. Then

Ž .1 The prime radical n is weakly in¨ariant.

Ž .2 If p is a minimal prime then Cdim Arp s n.

Ž .3 A has a quasi-Frobenius ring of fractions.

Proof. By Proposition 6.18 the rigid dualizing complex of A is R s
s w xA n . According to Corollary 6.22, Cdim is weakly symmetric. Now theR

w xfunction denoted d in ASZ, Theorem 6.1 coincides with Cdim , so allR

assumptions of that theorem hold.

The next theorem is due to Gabber in the case when gr A is Ausland-
er]Gorenstein, and an elegant proof was communicated to us by Van den
Bergh. We extend the result by dropping the Gorenstein condition.

THEOREM 6.24. Let A be a filtered k-algebra such that gr A is a noethe-
rian connected graded k-algebra with graded Auslander balanced dualizing

� 4complex. Gï en a Cdim-pure A-module M, there is a good filtration F M onn

it such that gr F M is Cdim-pure.

Proof. The basic idea is to start with an arbitrary good filtration on M

and to modify it to get purity.
˜ ˜Let A be the Rees algebra of A, and let R be its balanced dualizing

˜complex. So R has the graded Auslander property.
Let n [ Cdim M q 1. Choose any good filtration F

X on M and let
˜ F

X ˜ ˜ Ž .M [ Rees M. Since M is t-torsion-free and M s p M, by 6.4 we have
˜ ˜ X ˜Cdim M s n. If M ; M is any nonzero graded submodule then because

˜ X ˜ X ˜p M ; M, and because M is pure, we see that Cdim M s n. Thus M is
pure.

Set

˜ yn yn ˜ ˜TE M s Ext Ext M , R , R .Ž . Ž .Ž .˜ ˜A A

Ž .As in Theorem 2.14 3 there is an exact sequence

˜ ˜ ˜0 ª M ª EM ª Q ª 0, 6.25Ž .Ž .
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˜ ˜where Cdim Q F n y 2. Consider the module N which is the t-saturation
˜ ˜Ž .of M in E M , i.e.,

˜ ˜ i ˜<N [ x g E M t x g M for some i G 0 .Ž .� 4

˜ ˜ ˜ ˜Since NrM is t-torsion it follows that M s p M ª p N is bijective; but
˜ X ˜the filtration F on p N may be different from F . Observe that N is

˜ F ˜t-torsion-free, so by lifting back the filtration we obtain N ( Rees p N.
˜ ˜ ˜ ˜Ž . Ž . Ž .By 6.25 we get Cdim NrM F n y 2, which implies that E M ª E N is

bijective. Therefore by changing the good filtration on M from F
X to F,

˜Ž .we can assume that in 6.25 the module Q is t-torsion-free.
Having done so we get a short exact sequence

˜ ˜ ˜0 ª p M ª p E M ª p Q ª 0,Ž .0 0 0

where p denotes the functor M ¬ MrtM. Hence in order to prove that0
˜ ˜Ž .gr M s p M is pure it suffices to prove that p E M is pure. Now, using0 0

gr ˜ ˜ yn ˜ ˜Ž . Ž .the duality functor D s R Hom y, R we have L [ Ext M, R s˜˜ AA
yn ˜H DM, which is t-torsion-free by Lemma 5.4. Therefore by the same

˜ ˜ yn T ˜Ž . Ž .lemma, Cdim p L s n y 1. Now E M s H D L, and by formula 5.50

when i s yn we get

yn T ˜ yŽ ny1. T ˜p H D L ; H D p L y1 .Ž .Ž .0 0

yŽ ny1. T ˜But by Theorem 2.14, the module H D p L is pure of dimension0

n y 1.

If gr A is a commutative affine k-algebra and M is a finitely generated
Ž . FA-module, define I M ; gr A to be the prime radical of Ann gr Mgr A

w x Ž .for some good filtration F on M. By MR, Proposition 8.6.17 , I M is
independent of the choice of good filtration. The characteristic ¨ariety of M

is defined to be

Ch M s Spec gr ArI MŽ . Ž .

Ž w x .cf. Co, p. 98 for the case when A is a Weyl algebra .

Proof of Theorem 0.4. Recall that a variety is called pure if all its
irreducible components have the same dimension. The support of a Kdim-
pure finitely generated module N over a commutative affine k-algebra B

is pure. But for a commutative algebra Kdim s GKdim s Cdim . HereB B B

we take B [ gr A and N [ gr F M.
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