

 In $\$ 10$ (Example 3) of the preceding chapter it was briefly indicated how the well-known construction of the field of fractions of a commutative integral domain
could be generalized to arbitrary commutative rings. When trying to extend this could be generalized to arbitrary commutative rings. When trying to extend this
construction to non-commutative rings, one finds that this is not always possible, construction to non-commutative rings, one finds that this is not always possible,
but that one can give necessary and sufficient conditions for the existence of a ring
of fractions. Such a condition was first found by \varnothing. Ore [1] around 1930 for the of fractions. Such a condition was first found by \varnothing. Ore [1] around 1930 for the of an arbitrary ring was first considered by K. Asano [1]. General rings of fractions were studied by Elizarov [1], and a systematic theory of rings and modules of
fractions was developed by P. Gabriel [1,2] in connection with his theory of general rings of quotients.

§1. The Ring of Fractions

Let A be a ring and let S be a multiplicatively closed subset of A, i.e. $s, t \in S$ implies $s t \in S$ and $l \in S$. We define a right ring of fractions of A with respect to S as a ring
$A\left[S^{-1}\right]$ together with a ring homomorphism $\varphi: A \rightarrow A\left[S^{-1}\right]$ satisfying: F1. $\varphi(s)$ is invertible for every $s \in S$.
F2. Every element in $A\left[S^{-1}\right]$ has the form $\varphi(a) \varphi(s)^{-1}$ with $s \in S$. Similarly one defines a left ring of fractions $\left[S^{-1}\right] A$ of A with respect to S. It is not immediately clear that the axioms $F 1-3$ determine $A\left[S^{-1}\right]$ uniquely,
but that so is the case follows from the fact that $A\left[S^{-1}\right]$ is a solution of a universal problem. (We will use the term "universal problem" in an informal sense, because attempts towards a formalization of it tend to become a bit awkward. The unicity
of solutions of universal problems can therefore not be proved formally here, but of solutions of universal problems can therefore not be proved formally here, but
it can be done in each specific case by the same kind of argument as was employed
in the typical case of tensor products (Prop. I.8.1).) in the typical case of tensor products (Prop. I.8.1).)

Proposition 1.1. When $A\left[S^{-1}\right]$ exists, it has the following universal property:
for every ring homomorphism $\psi: A \rightarrow B$ such that $\psi(s)$ is invertible in B for every
Proof. σ is defined as $\sigma\left(\varphi(a) \varphi(s)^{-1}\right)=\psi(a) \psi(s)^{-1}$. We have to verify that this
well-defined. So suppose $\varphi(a) \varphi(s)^{-1}=\varphi(b) \varphi(t)^{-1}$. Then $\varphi(a)=\varphi(b) \varphi(t)^{-1} \varphi(s)$

